mCAT 2.20

The mCAT Realtime Operating System

© 2008 mocom software GmbH & CO KG

This document covers
mMCAT Version 2.00-2.20 for TLCS900 Microprocessors.
« mCAT Version 2.20 for ARM Microprocessors.

Document Version 91 - 1. August 2008 Volker Goller

© 2008 mocom software GmbH & Co KG 1/399

mCAT 2.20

Content
I Installing MCAT ... e e r e e ennan 21
1. A Note to Experienced MCAT USEers.......cceumimmmmmmmmmmmmmmmmmmmmmmmmmemmmmmmemsmemsessnnnnsssss 21
72 4§ = L e T T 1= - 21
3. Install the Software...........ooo i 21
4. Where Can | Find MCAT ... e e s e s s s s s e e s s s s s enm s s s e nm e eeen 21
LT € T=1 0o 1 1= o3 1 =Y o 1PN 22
6. Try @n EXamPIe..... .o e e s s er s smmsssss s s s s s s e s nmmm s s s s e s s s e ma s s nma s s e mma s e e nmnnnnes 23
7. DONE! The Things to do Next ... e 27
Il. MCAT 2 Users Manual.........ccceuiiiiiceciiiirrcecse e e e s e e e 28
I e T LW T 4T o O 28
L R N (2 I o 1= T PRSPPSO 28
1.2. What You Need to Know Beyond MCATccooiiiiiiiiiiceee e 28
2. The Elements of MCAT ... e e s s r e s s e s e e e e enan 29
2 R 1Y o To 1] 1 29
B2 I 11 Y- T £ 30
G T 1= 11 7R 30
2.4. The MCAT MeSSage PasSing.......cccoiiiiiiiiiiiiiiiieiieie ettt e e e e e e e e e e e e e e eeaaas 31
S I = T o PP 31
R N 1= Y P 32
2.4.3. mCAT Implementation of Clients and Serversoviieeiiiiiiiiiiiieeee e 32
2.4.3.1. MCAT MeESSAQE ID 32
2.4.3.2. MCAT MESSAUES.cetutiuuuiiieieeeee et et e e e et e e e eaaaanas 33
2.4.3.3. USING PriOrtIES. ... 33
2.4.3.4. Memory Management and Message PassSing.............uuueeiieiiiiiiiieiiieeeiieeeeeeeiiinn. 33
2.4.3.5. Message Queues and using Multiple Queues...............ccooiiiieiiiiiiiiiie e 34
2.5, INTEITUPE DIIVEIS. ..ottt e e e e e e e aananes 35
D TS o= 1= To [o] = 4 =T TR 36
D A I o L= I o =T S 1= o o = PR 36

2/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

2.8, EXPrESSIOTM.. . ittt ettt e e e ettt e e e et e e e mt e e e e e nbe e e e aneeeaaens 36
b I Y =T 0 T Y 1Y, =T g =T =T 0 1= o | 37
2.10. C Programming Style and supplied MACROS............ccciiiiiiii e 37
2.10.1. PRIVATE, PUBLIC and EXTERN..........cotiiiiiiieiiiee e 37
20t O 1 To] o J PSP 37
2.10.3. ARRAYSIZE ...ttt et e et e e ettt e e e aaaaaens 38
2.10.4. ALIGN. ...ttt e e e e e e et e e e e e na e e e nae e e e anaeaaaaens 39
3. Putting it all Together ... 39
3.1. A Simple Example: TICKTESTuuiiiiiiiieeie e 39
3.1.1. INCIUAES NEEAEA ...t 39
TR O - 1] | TP USURPPURRT 39
K TR R R = TS] 1Y = ST RUOPRPRRRPR 40
B T B I o =R Yo TH] o= TN 0o o = 41
3.1.5. Creating the MakKefile. ... 43
3.1.5.1. Selecting a Target Memory DescCription..........ccccoeiiiieeiiiiiiiiiicccieee e, 44
3.1.5.2. Generating the Initial Module Header (IMD)...........ccooiiiiiii e 45
3.1.6. Compile and DOWNIOAM...........cooiiiiiiiieee e 47
3.1.7. EXeCUte @nd DEDUQ.........uuiiiieiiii e e 48
3.2. A Example using EXPressIO..... ... e 48
3.2.1. The Gifts Of EXPressIO.......uuuuiiiiii it 48
3.2.2. The SOUICE COUE.......coiiiiiiiieee et s 49
I T 0o 10] o1 (== g o N {0 o TP 52
4. What to Read Next?.........ccciimmiissnrrr s 53
lll. SYSMON — A System Monitor.........ccccccciiimmmeiinnirrcss e s e e 54
IR 4o T ¥ T2 4 T o 54
2. Line Setup and Terminal Features..........cccooiiiiiinninnnnnnnnsnnnees 54
3. BasiC SYNtaX......ccciiiiiiiiiiiie et 55
3.1. SYSMON is Case SeNSItIVE........ccuuiiiiiiiiiie e 55
K o2] o PP 55
3.3 NUMDEIS ...ttt e e e e e e e e e e e e e e e e e enannaaas 55
B] {1 o [P UPPPPPT 55

© 2008 mocom software GmbH & Co KG 3/399

4. Command Reference.........cccmiiiiiiimniiniis s s 56
4.1, SYSMON HEIPD. .ttt ettt e e e e e e et a e e e e e e nnneeaeaeens 56
4.2. MCAT Base COMMEANGS.......coiiiiiiiiiiiiiiiee et e e e e e e e e e e e eennnnnes 57
4.3. Memory and I/0 Manipulation Commands..............oooiiiiiiiiiiiiiiiiiiiiee e 66
4.4. Flash Memory Manipulation FUNCHONS............coiiiiiiiii e 69
4.5. EEPROM Manipulation FUNCLONS...........oouiiiiiiiiii e 71
4.6. Program Upload / Download and Start.............ooooeiiiiiiiiiiii e 72
4.7. Optional CoMMEANGS.........uiiiiiiii i e e e e e e e e e e e e e e e e e eaaa e 73
4.7.1. ExpresslO Specific COmMMAaNdS........ccooeeiiiiiiiiiiiiiiciee e 73
4.7.1.1. Constant Values Used for xinfo & xcfg Commands.............cccoooiiiiiiiiiiiiiiineeeeees 77
4.7.2. Realtime Clock Specific Commands............c.oooriiiiiiiiiiii e 79
4.7.3. BGMEM Specific COMMANGS........cciiiiiiieieiiiiiiiiieeee et eeeea s 80
4.7.3.1. FOrmat {SIZE}.....o i 80
O B o [| PRSP 80
4.7.3.3. attrib <fillename> <Hr|-r> ... 80
4.7.3.4. del <fBNAME>......ooiiiiii et 80
4.7.3.5. create <filename><#records><#size><fifo|lifo|ring|[random>.............................. 80
4.7.4. SOCKET / Ethernet Specific COMMaNdS........cccooeeeiiiiiiiiiiiiccee e 81
4.7.4 1. IP-Information at a Glance: info and iPS.......ccouviiiiiiiiii 81
4.7.4.2. Setup IP-Addresses: SELP.......oooiiiiiiiiiiii e 81
4.7.4.3. List IP-StatUus: IPS. oo it e e e 82
4.7.4.4. Set/Display Ethernet MOE............ueeiiiiiiiiiiiiiiiaice e 82
4.7.4.5. Set the TELNETD PaSSWOIQ........cccciiiiiiiiiiiiiiiiiiiiee ettt 83

IV. mCAT Kernel Reference..........ccociiiiiiiiiiiiiisseecinncrnneenneeene 84

1. The mCAT Kernel Technical Reference..........ccccoiiiiiimmiiiiiinnnnennnnnnneececeen 84
1.1. TypographiC CONVENLIONS...........oouiiiiiiiei e e aa s 84
1.2. A NOtE ON DatatyPes.cooiiiii e 84

2. MCAT TaSKS.....ceeiieiiiiiiiiieeirr s ennnes 85
2.1. The Concept Of TasksS.....coooiiiiii e 85
2.2. Relation with other MCAT CONCEPLS......uvuuiiiiiiii e 85
2.3. Task Related Data STrUCIUIES............coiiiiiiiiiiiiiee e 85
2.3.1. The Data Structures before MCAT 2.20-RO0168.........ccoeveeieriiiiiiiiiiiinn 86
2.3.2. The Data Structures for non TLCS platforms, MCAT 2.10-R00168 and later......... 86

4/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

2.4, FUNCHON REEIENCE. ... e 87
3. MCAT Threads........cccouimiriniiir s 92
3.1. The Concept Of ThreadS........uuuuiiiiiii e e e e 92
3.2. Relation with other MCAT CONCEPLS......oovviiiiiiiiei e 93
3.3. Thread Related Data StrUCIUres.............ouiiiiiiiiiiii e 93
3.3.1. MCAT 2.10 and later - TLCS900 Platform..........cc.ceeiiuiiiiiiiiee e 93
3.3.2. mCAT 2.20 —non TLCS platform..........uueceiiiiiiiiieceee e, 94
3.4. FUNCLION REFEIENCE.eiiiiiiiie s 95
4. MCAT Message PassSing........cccccuiimmnminnismsrnssss s 110
4.1. The Concept of Message PasSiNg...........uuueiiiiiiiiiiiiiiiiie e 110
4.2. Relation with other MCAT CONCEPLS.....uuciiiiieieiiii e 110
4.3. The MSGID & MSG Data StruCtUres............eeeiiiiiiiiiiiiiie e 111
4.4, MeSSageS: HOW 107, ... 112
4.5, FIOW CRAItS.ottt ettt 112
4.6. FUNCHION REfErENCE......cciiiieeiie e 116
5. mCAT Interrupts and QuickISR Interrupts.........ccccceiiiiiiiiiiiiiiiniicnssrs e, 124
5.1. The Concept Of INterrupt DIVEIS.........uuu e 124
5.1.1. The WorkSpace Data StruCture............ooooeviiiiiii e 124
5.1.2. WS Data Structure on the TLCS platform............oooiiiiiiiicci e, 124
5.1.3. WS Data Structure on non TLCS platforms...........ccccoviiiiiiie e, 125
5.1.4. The “ServiCe” FUNCHON.coiiuiiiiii e 126
5.1.5. The “wakeup” FUNCHION............ouiiiiii e e 126
5.1.6. The “gO” FUNCHON.......oiiiiiiiiiiii e 129
5.1.7. The “notify” FUNCHON. ... 129
5.1.8. IMpPortant NOE........oooiiiiee e e e e e aens 129
5.2. TLCS900 INterrupt LEVEIcooeeiiiiiie et 129
5.3, QUICKISR. ... aaaaeeeeas 130
5.3.1. QuickISR on Toshiba TLCS900 Platforms (MCAT 2.10)......ccccueeeiiiiiiiiiiieeeeaeenn. 130
5.3.2. QuickISR on ARM7 platforms (MCAT 2.10-R0O0168)............uuurrmmmmmeeieieeieeeeeeeennnnn. 131
5.4. Relation with other MCAT CONCEPLS.......coeeiiiiiiiiiicce e 131
5.5. FUNCLION refEreNCe.......cco i 131

© 2008 mocom software GmbH & Co KG 5/399

6. MCAT Shared Libraries..........cccccirmiiiinimninre s 136
6.1. The Concept of Shared Libraries............ooo oo 136
6.1.1. What is @ Shared Library............oooouiiiiiiii e 136
6.1.2. A Shared Library Call...........coo oo 136
6.1.3. Why Should | use “LOCAL” StruCtUre?.........ccoiiiiiiiiiiiiiieteeee e 136
6.2. Relation with other MCAT CONCEPLS.....oeeeiiiiiiiii e 137
6.3. The Library DeSCIIPTON.uueeeeiiiieeiiieiee e e e e e 137
B.4. MIC & LDF-FiIES.....ceiiiiieieiiieie et eeeaeeas 137
6.5. FUNCLION REFEIENCE.eiiiiiiiie e 137

7. mCAT Trace & Debug Interface...........cccceviimiiiiiisic e, 138
7.1, FUNCLON REFEIENCE. ... 138

8. mCAT Modules and the IMD (Initial Module Descriptor).......ccccccceeeeeiiieennnn. 140
8.1. The Module / IMD CONCEPL......uuuuuiiieei e e e e e eaans 140
8.2. IMD REFEIENCE.eiiiiiii i 140
8.2.1. MCAT 2.10-RO0TBB.......ceeiieeieeiiiiee ettt e e e e e 141
8.3 INIT-MOTUIES. ...ttt et e et e e e et e e e ent e e e e eaaaaeeens 142
8.3.1. What are INIT-MOAUIES?.........euiiiiiiiiiiiiieeee e 142
8.3.2. HOW 10 Write @n INIToeeeiiiieeeeee e 143

9. mCAT Miscellaneous System Functions............ccccoooocecceecciiiirrrcecccseeeeeen, 145

10. The MCAT TicKer SeVICe.......coiiiimmriiniiirrinnere s ssnnseees 146
10.1. What is the Ticker Good fOr?........cccoiiiiiiiiiiiieeeeeee s 146
10,2, TALL ettt et e et e e et e e e e e e e e e e e e enne e e e e nneaeeennnnnnnnnes 146
10.3. TAFTER . ..ttt e ettt e e et e e e e e e e e nneeaeeenneas 147
10.4. The TiCKerMSg SEIUCIUIE.........oooiiiiii e 148
10.5. What is an EXPressTimer (XT) 2. ittt e e e e e e e 149
10.5.1. The ExpressTimer Handler FUNCHON............coiiiiii e 149
10.5.2. The ExpressTimer Data Structure...............oovvviiiiiiiiiieieeeee e 151
10.5.3. The XT-API fUNCHONS. ..o 151

11. Error Code Cross Reference.........cccccoiiiiiimmmnnnnnnsssnns s 153

V. MCAT EXPressIOTM........oirrciireeir s e s e s e s s e e 155

6/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

1. Introducing EXpressIOTM..........cccoiiiimmiiniir s snsnees 155
I O Y=Y 1= SRR 155
1.2. ANOLE ON DatalyPesS...ccovviiiiiiie e ————————— 155

7 (0 10] = N 1 0 P 156
2.1. Mapping Physical Ports t0 [OOBJECTS........cooiiiiiiiieieeeeeeeeeeeeeee e 157
2.1.1. EXpressIOTM PhySiCal DFIVEIS.......cccoiiiiiiiiiiie ettt 157
2.1.2. Bus, Module, Channel: Referring to the Hardware..................cccooiveiiii e, 157
20,3, ClASSES. ...t e e e nnaee 158
2.1.4. The IOODbjCreate FUNCHON.........cooiiiiiiee e 159
2.1.5. The SYSTEM FUNCLON ..ot e 160
2.2. Vector Access versus Single Channel ACCESSuuuuiiiiiiiiiiiiiiiiiiiiieeeeeeeee 160
2.3. The IOOBJECT Methods in Detall...........ccuiiiiiiiiieiiee e 160
2.4, Configuration and Information Retrieval...............ovviiiiiiiiiiiiiiii e 162
2.5, “EXPress Programs”.........o e 164
2.5.1. The WAIT INterfacCe. ... 164
2.5.2. Message Passing INterface...........ccceeeiiiiiiiiiiiicccc e 166
2.5.2.1. Message Passing Interface — Function Reference...........ccccccooooiiiiiiiiinnnnn.. 168
ST TAVE= el g1 oo o F= T 0 To |11 Vo TR 170

3. Putting it together: A Quick Start Tutorial...........ccccoiiiiiiiiicc e 171

4. EXpressIOTM Reference........oiiceiicceeeeee et ee et s s e s s s e sn e s e s e s s s s s e mmnn e 172
4.1. Using CFG and INFO Method Calls to Configure Devices.............cccoovveviiiiinceennnn.. 172
4.1.1. Basic Info and Configuration Calls.............ccoooiiiiiiiiiiiee e 173
4.1.1.1. Hardware Module Identification...............ccooiiiiiiiiiii e 173
4.1.1.2. Retrieving Interface Information..............ooooii e 173
4.1.1.3. Retrieving Hardware State Information............cccoooo s 174
4.1.1.4. Enable Operation............coouiiiiiiiiiii et 174
4.1.2. ANAIOG 11O 175
4.1.2.1. Preferred Physical UNitS..........uuuiiiiiiiiiiie e 175
4.1.2.2. CFG & INFO Calls Special to Analog Modules............c.ccceeevviiiiiiiieeiiiiiieeeeinnn, 175
4.1.2.3. Setting Individual Scaling Factors...............ooeiiiiiiii e 177
4.1.2.4. Attaching an Individual Interpolation Table...........ccccccciiiii s 179
4.1.3. CFG & INFO Calls for Position Encoder Drivers...........ccceeeiiiiiiiiiieeee s 179
4.1.4. XP BASIC Info and Configuration CALLS..............cooiiiii e 180

© 2008 mocom software GmbH & Co KG 71399

4.1.4.1. Retrieving the Name of an ExpressProgram...........cccccoeeeeeiiiiiiiiiiiccccccciis 180
4.1.4.2. Setting and Retrieving the Sample Rate.............cccoiiiiiiiiiii e, 181
4.2. ExpressPrograms for DIGITAL I/O.......uuuuuiiiiiiiiieieeeieeeee e 182
4.2.1. Single Channel XP'S.......cooiiiiiiiiiii et 182
4.2.1.1. EDGE DETECTOR....cciiiiiiitiiie ettt 182
4.2.1.2. EVENT COUNTER.....cetiiiee it 183
G T = U | S T PP 183
4.2.2. VECIOT XP'S. ..ottt et e ettt e e e e e e e e e e e e e e et aaearaaaa 189
4.2.2.1. VECCOUNTER.....coii ittt a e e 189
4.2.2.2. CAPTURE.....coii ittt e e e et e e e e e e et e e e e e e e nnneneeas 189
4.3. Supported Hardware Reference...............uuuueeiiiiiiiiiiiiiii e 190
4.3.1. ELZETB80 TSM. ...ttt e e e e e e e e e e e e s 190
4.3.1.1. TSM-ARMOCPU. ...ttt e e e e e 190
4.3.1.1.1. The Hardware Frequency and Event counters.............ccccccoiviiiiiiiiiiin e, 192
4.3.1.2. TSM-CPUH2Z...... et e e e e 194
4.3.1.2.1. The Hardware Frequency and Event counters............ccocoeiiiiiiiiiiiiince, 195
4.3.1.3. TSM-CPUOOO0.......ceiiiiieiiie ettt ettt e bbb 197
4.3.1.4. Digital 1/0 DOAIAS. ..o 197
4.3.1.5. ANalog I/O MOAUIES.......cco et e e 198
4.3.1.5.1. TSMBADS...... .ttt ettt e e e e ettt e e e e annnenaaaa 198
4.3.1.5.2. TSMBAD 2.ttt e e 199
4.3.1.5.3. TSMZ2DAN 2. ettt 200
4.3.1.5.4. TSMADAMB. ..ottt e bbb 200
4.3.1.6. POSItioN ENCOAENS.......ccoiiiiiiiiii ettt 200
4.3.1.6.1. TSMAINC. ...ttt e ettt e e e e e et e e e e e e e nnaeeeneennnnes 200
4.3 2. NET AT et 201
4.3.2.1. NET-AT-AIAR....ccooeee e 201
4.3.3. EVADODO0. ...ttt e e 201
R | D PP PPPSPPPRPRRN 203
S T 124 @ = U 1 U 204
4.3.5.1. LIMItAtIONS .ooviiiiiiii i 204
4.3.5.2. 12C-8EBAZ4 ... 204
4.3.5.3. 12C-16E24......co oo s 205
4.3.6. BITBAHN. .. e e 205
5. Library Function Reference.........cccccoiiiiiiiiiiiiiiiciies s seses e s e 207
6. LINTAB.EXE....... oo s 209

8/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

VI. mCAT Socket Interface...........ccommmmmiiiiiiiiiinrr s 214
1. INtrodUCHION......eeee e —————————————— 214
1 FRATUIESt 214
1.2. Difference to UNIX SOCKELS.coooiiiiiiiiiii e 214
2. Socket-Interface...........ccovvmimiiii s —————— 215
2.1. The Structure of the mCAT TCP/UDP/IP Protocol Stack............ccoooeviiiiiiiiciiiiinnnn. 215
A = 7= 1= (o 1= (1] o 215
2.2.1. Before the First Steps.......uu oo 215
2.2.2. Ethernet SetUP......ccooo i 216
2.2.3. Create @ MSGID........coo s 216
2.2.4. Create @ SOCKEL.........ooiiiiii e 217
2.2.5. Resolve Domain NamMIES...........uiiiiiiiiiiiiiiieee e e 218
2.2.6. ThE MESSAJE LOOP....eeeeeeiiiiiiiiiiiiieee ettt e e e e e e e e e e aaa e es 218
2.3. Data EXCRaNQE....ccoeiiiiieiee et 219
2.3.1. Connection Less Protocols (UDP)........coooiiiiiiiiiiiiieee e 219
2.3.1.1. NO CONNECHION. ...ttt e e 219
2.3.1.2. B CarefUll..... .o 219
2.3.1.3. Data EXCRaANGe. ... i 220
2.3.1.4. Socket or Event: A Note on the Referred Objects..............coooiiiiiiiiiiiiiiiiii. 221
2.3.2. Connection Orientated ProtoCols (TCP)......ccuvvviiiiiiieiieiiieeeeeeeeee e 221
2.3.2.1. Establish @ CONNECHION. ... 221
2.3.2.1.1. mCAT Application as @ TCP SEIVer...........uuuiiiiiiiieeiiiiiieeeeeee e 221
2.3.2.1.2. mCAT Application as a TCP Client.............ooomiiiiiiiiiiieeeeee e 222
2.3.2.2. Data EXChaNGE.cooi ittt 222
2.3.2.3. Terminating @ CONNECLON.........ccccieiiiiiiiiiice e e 222
2.3. 2.4, KEEP-ALIVE. ...ttt ettt eaa s 223
b (111 Y2 T T o < 223
3. The Function Reference...........ccccoiiiiiiiiiiiiemmmn s 224
3.1. Create and CloSe SOCKELS.cooiii e 224
3.2. Handling CONNECHIONS.coiiiiiiiiiii et 225
3.3. Data EXChaNGe.cooiiiiiii e 229
3.4, MISCEIIANEOUScoeiiiiiiiieie ettt e e e e e e e e e e e e e 231
3.5. The SOCKEt EVENLS......cooiiiiiieiiie e 232

© 2008 mocom software GmbH & Co KG 9/399

3.5.1. MS_EVENT_DATA_AVAILABLE........ooiiiiiiie e 233
3.5.2. MS_EVENT_CONNECTootiiiiiiiiiiiie ettt 233
3.5.3. MS_EVENT_DISCONNECTootiiiiiiieiiiiie et 233
3.6. SOCKEE ErTOr COUES. ...cciiiiiiiiiiiei ettt ettt e e et eeeeaanaas 233
T S) - 1 1 o] = 233
4.1, GetTime USING UDP.......ueeee e 233
4.2, GetTime USING TCP.. ..o e e 235
4.3. A SIMPIE MCAT-TCP-SEIVEN.......uuuieeii et 237
5. LIMItatioNS......cueeeeiiiiiriisceerrr s 239
VII. MCAT HTTPD Server.......ccoiiiiiieessnsissnssssssssssss s s s s ssnsssssseees 241
1. INtrodUCHiON......ceeeee e ————————— 241
(I R O 1 B =T o To [T o TSR 241
1.1.1. What is CGI-HaNdliNg?.........veiieiiiee e 241
1.1.2. Traditional CGI-HandliNg..........cuueiiiiiiiii e 241
1.1.3. HTML-Template processing using MSP..........cccccoiiiiiiiiiiiii e 242
2. The MCAT-HTTPD-Server SetUp.......cccccvrrrriirrcsssmmrrrrrrssssssssssmsessessssssssssssmsneees 242
2.1, TCP/IP CONfIQUIAtiON.t 242
2.2. The HT-FileSystem (HTFS)........oiiiiiiieiiie e 242
2.3. Basic AUThENtICAtION.uuiiiiiieiiiieieee e 243
2.4. The 'config.db’ file.......oii et 244
2.4.1.CoNnfig Parameters..........ooooiiiiiiiiiiii e 245
R St T I o o SO PP PEPURTRT 245
2.4.1.2. CONNECLIONS. ...coiiiiiiiiii ettt ettt e s s s s e e e 245
g TR TR (o o PO PPPPPRTPP 245
R B S (=TT o T 1Y 245
2.4.1.5. TXDUFFEISIZE....cooieieie e e 246
2.4.1.6. RXDUTFEISIZE.....coiiiieeee e 246
A S T |V 1= 1 4 o To Yo | SO 246
2.4.1.8. User-Names and PasSWOrdS..........ccuuiiiiiiaiiaeiiiiiie e 246
3. The mCAT Server Page (MSP) Language..........cccccmrrrriinninnssnmsnnnnssnnnssssssnnns 247
3.1. CGIl Argument PASSING.........coouuiiiiiiieiiii e e e e e e e e et e e e e e e aaans 247
3.2. AN MSP StatemMent......cooiiiiiiiiiie e 248

10/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

K R O 4 = ==Y £ PP 248
3.2.2. ESCAPE CharaClerS.......uuuuuiiiiiii it e e e e et e e e eaanas 249
3.2.2.1. General statement escape character................coooiiiiiiie e, 249
3.2.2.2. Macro €SCape CharacCter........ .. oo oo e 249
3.2.2.3. Keyword €SCape Character...........uuuuiiiiiii i e e e e 249
3.2.2.4. Constant value macros escape character.............ccccceeeiieeiieeeiiieeeecee e 249
32,3, SYMIDOIS. ..ttt e et e e e e e e e e eaaaas 250
3.2.4. NGMESPACES. ...ceiiiiiiieeeee ettt ettt et e s e e e e aaaneneaaas 250
3.2.5. CoNStaNt SENGS...coiiiiiiiiiiie e 251
3.2.6. ArgUMENT LISES.....eeiiiiiiiiiiiiii e 251
3.2.6.1. BASIC CONCEPL......ciiiiieieici e 251
3.2.6.2. Accessing Global ArgUmMENTS..........uuuiiiiiiiiiiiiiiii e 254
3.2.6.3. Accessing Local Variables.............coooiiiiiiiiiieieeeeee e 254
G T A = YA o L 254
3270 LOCAI T ATQV .ttt 254
K 7 o= Lo S (o TSR 255
3.2.7.3. paste / tOIOWET / TOUPPETuciieiieeeeieeeeece e e e eaaaas 255
3.2.7.4. foreach / for / @NdfOr........cccooo i 255
3.2.7.5. if [elseif / else / endif / NOL............uuiiiiiiiiiiii e 256
3.2.7.6. While / @NAWRIIE.........uuiiiiiiiiiiiii s 257
3.2.7. 7. repeat [UNtil.....cooo e 257
3.2.8. FUNCLIONS @Nd FIlLEIS.... oo i 257
3.3. A few Considerations on HTML.........oooiiiii e e 258
3.4. INtriNSIC EXLENSIONS.oiiiiieiii e e e e e eaens 258
3.4.1. IntrinSiC NamMESPACE "XiO'.......oiiieiiii e e 258
3.4.2. Intrinsic Namespace "INt'.........co i 260
3.4.3. Intrinsic Namespace 'SYStemM'........ooi i 262
K O W] (o) = (=T 1] 0] 1 PP 262
3.5.1. Internal Representation of Argument ListS..........cccccuuiiiiiiiiiiiiiiieeeee, 262
3.5.2. The Server Handle..........ooooeiiiiiiiiiiie e e e 263
3.5.3. Registering @ NameESPaCE.uuuiuiiiiiiiiiiiiiicceeee e 263
3.5.4. AdAING MACIOS.......coiiiiie ettt e e e e 263
3.5.4.1. Adding Constant MacCIOS...........cccciiiiiiiiiicce et 263
3.5.4.2. Adding Function and Filter Macros...............eeeiiiiiiiiiiiiiiiiiieeeee e 263
3.5.5. Writing Function and/or Filter Macros.............ccooooiiiiiiiiiiiiiiiieeeeeeeeeee e 264

© 2008 mocom software GmbH & Co KG 11/399

3.5.6. A Customer supplied MSP-Function Example — The complete Source................ 266
3.5.7. The Argument List Handling APL........oou e e 268
4. The mCAT-HTTPD-Server traditional CGI-Processing.............ccoouvvirirnnnnnnnes 268
VIII. MCAT Serial DriVer.........cccoiiiiiimimimeeccssssserrssssssssssssss s s s s e snnsssssenns 271
1. INtrodUCEION.......ccceeeeee e ra——. 271
2. Basic Operation...........cuiiiiiiiiiiiiiisisssiss s s ann s asseenns 271
2.0, CONTIGUIATION. ... e 271
2.1.1. EEPROM Configuration............eeeeeeiiiiiiiieee e 271
2.1.2. APl based Configuration................uuuiiiiiiiiii e 273
2.1.3. Configuring »SimpleHaNAIEr«..............oooiiiiiiiii e 274
D O] o1 - 1110} o F PP 275
2.2.1. MeSSAQE FOIMALS.cceieiieii e e e 276
2.2.2. REQUESTISIREPIYS. ...ttt 276
2.2.3. User Supplied RX HaNAIEr ... 276
2.2.4, BUFfEr USAQE. ... e 277
3. Function Reference...........cccoirinincn 277
3.1, BaSIC FUNCLIONS.coiiiiiiiiiiiie ettt e 277
3.2, SIMPIEHANAIET ... e 279
3.3, AUXIlary FUNCHONS.coiieii e e e e e e e eans 282
3.4. Modem Line HandliNg...........eeiiiiiiiiieaee e 282
4. The SIiMpIelO FUuNCLioNs....... .o s 283
4.1. SimplelO Function directed to the default UART (SYSMON).........ccoovviiiiiiiiiiiiinnnns 284
4.2. Disabling SYSMON (MCAT2.20).....ccuueeeeiiiiie ettt 285
IX. mCAT Date and Time Library......ccccceeuceiiiiiiimrecccerreeceeeeeeneeeeens 287
1. INtrodUCHION......eeeeee e ————————————— 287
(R B = = T Y o 1= TSR 287
1.1.1. The MTIME Dat@ TYPE.....ceeiiuiiiieiiiiie ettt ettt e e e e e e e 287
1.1.2. The SYSTIME SHrUCIUIE........uiiiiiiiiiiiiiiie e 287
(I G T Y 11 €| 5 SRR 287
IR I = 4 (o = PP PPPPPPPPRPP 288

12/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

2, MEIME.... e 288
2.1, FUNCHON REFEIENCE......oeeiiiiiiieeeeee et 288
3. SYSTIME..eeiiiee i 290
4. FUNCtion ReferenCe........ooviiiiiiiiiiieeieesees s s s e s nnn s s e nes 290
5. Schedule......... e ————————————— 292
5.1. FUNCLION REFEIENCE.eiiiiiiiiie e 292
X. BgMem: Nonvolatile Data Storage for mCAT........ccccccciiiiiirinnnnnn. 295
1. INtrodUCHiON......eeeee e ——————————— 295
2. Fundamentals..........ccooicimmiimieer - 295
P O o T- T 012 111 o R 295
2.2, Fle NAMES...ccoeiiiieiiee ettt e e e e e e e e e e ettt e e e e e e 295
2.3. Treatment of BgMem at System Start............coooiiii e 296
2.4, MemOory Man@gEMENT...........uuuiiiiiiiiiiiiiieie et 296
B T 11 YN 4 o = 296
2.5.1. File POINTEIS. ...ttt e e e e et e e et e e enaeeenneees 296
P o 1 @ N 1= SRR 296
2.5.3. LIFO FlES.. . e eiee ettt ettt ettt e e e et e et e e e e e nnnees 297
2.5.4. RiNG BUFFEIS.....coiiiiiiiiiee e 297
2.5.5. Random ACCESS FilES........ccooiiiiiiii e e 297
3. Setup of a BgMem file........mmiiiiiiiiirrr e 298
3.1. Special Operating Considerations............c.cccooeiiiiiiiiiiiiiiice e 298
3.1.1. Changing Heap and BgMem Sizes............uuuiiiiiiiiiiiiiieeeeeee e 298
3.1.2. Creating and Deleting FileS..........ouuiiii e 298
3.1.3. Data Loss From Programming Errors............cceiiiiiiiiiiiieeecee e 298
S T T 0T T =T =1 = o T P 298
TR o g 0 o T L 310
Xl. mCAT Random Access Memory Management............ccccccoeuee.. 311
1. Introducing mCAT V2 Memory Management............cccccmmimriinninnnnnnnnnnnnnnnnn, 311
1.1. System Memory Heap Management............cooiiiiiiii e 311

© 2008 mocom software GmbH & Co KG 13/399

1.2. Message Buffer Pool Management...........coooiviiiiiiiiiiiiii e 311
1.3. Memory Address and Pointer Calculation.................coooviiiiiiii e, 312
B E- - 1/ o == 313
3. The Memory Management APL............cooiinmn e 313
4. The Buffer Pool Manager APL.......... s e e e s e s 315
XIl. mCAT Non-Volatile Memory Management..........c..ccveuriiiinennnnn. 321
1. Introducing Non-Volatile Memory Management............ccccoecmmmmrrrinnncnniniinnnn, 321
1.1. Serial EEPROM APt eeeean s 321
A o] Y 1T 4o Y . 321
IR TR 1 O | RS 321
2. Accessing EEPROMS............o e eeeceeeceeeeeeeneeeeeeennen s een e s snn s s sn s s s s s s s s s nnnnn s nnnnes 321
2.1. EEPROM AdAress SChEME........uuuiiiii ittt e e e e e eeenns 321
P I L= = o 0 Y N . P 323
2.3. The MCAT V2 EEPROM USAQE.......uuuuuiiiiiiiiiiiiiiiiiieiaeeaaee e e e e e e e e e e e e e e sesensneeneneennnnes 324
3. Accessing Flash Memory..........icciiiriirrrres s rs s s e s nnmmnnn e 327
A DELPAGE.....c oo 327
3.2. FLASH MEMOIY APttt e e e e et e e e e e e eeaens 328
3.3. Supported Flash Memories [12/29/2005]........ccccccouumimiiiiiiiieieeeeeeeeeee e 333
L S 7 O I Y=Y 334
4.1, 12C AdArESSING. .. i i i e eeeei it e e e et a e e e e e eaaaaaes 334
4.1.0.1. Extended addreSSiNg.........ccccuuuiiiiiiiiiii e e 334
4.2, 12C-FUNCLON REEIENCE..... oo i i 335
XIll. mCAT Tools Documentation.........cccceeeiciiiiiiiimrecnirrs e 339
1. The Basic Structure of MDE............ccoiiimiii e 339
1.1. The FOlder STrUCLUIE.........coeeeeee e e e e e e e eaaaa s 339
1.2 MCATINF.INL ..o e e e e e e e e e e s e e e e e eenan s 339
1.2.1. Registry Entry before MCAT2.20........ooo i 339
1.2.2. Registry Entry With MCATZ2.20.... ... 340
1.2.3. Section [MCAT] in MCATINF.INL ... 340

14/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

1.2.4. Path macro replacement....... ... e 342
I TV (O N I TSRS 343
2. The TOOIS.....c s s s r e n i n e e 343
228 T O 11V o TSSO RPRO 343
1220 11 | RSP 344
2.3 VIMAKE ...ttt ettt et e et e et e e e ene e e na e e e e e e anneees 344
228G Tt I U F 11 o 1Y/ F= T o T 7P 344
2.3.2. Command Line FOrmMat..........ooouiiiiiiiiiiiiie e 345
2.3.3. DEFAULT Makefile: v4.ini / VA103.iNi.....uuuieiiiiiie et 347
2.3.4. The Basic Structure of an mMCAT Makefile...........ccccooriiiiiiiiiiii 347
2.3.5. Extended COmMME@NGS.........uiiiiiiiiiiiiiieeaeee et e s 349
2.3.8. MIKLINKottt e e e et e e et e e ens e e snseeeesseaeeeennsneeeeeeennnnees 351
2.3.7. SBPATCH. ..ttt et e e et 352
2.3.8. TAG e e et e e et e e e et et e e e e ar e e e e e nnearneneeeas 353
b =Y 4 o1 F= 1IN o] oo =T o o P 353
240 FRAIUIES.....eeeeeeeeeeee ettt 354
2.5, HEX Fle TOOIS.....ceiiieeiiiiieeeee ettt e e e e e 355
2.5.1. HEXZ2IMG. ...ttt ettt ettt et e e e e e e e e e 355
2.5. 2. IMGZHEX..... . ettt et e e e e e e e e e e e e e e e e eeeeas 356
2.5.3. HEXMERGE....... ..ottt e e et e e e e e eee s 357
2.6. LItHIE HEIPEIS. ...ttt e e e e e e e e e e eeeaanne s 357
2.8.1. SETVAR ...ttt e et e e e et e e e e et e e e e e e e e e eeees 357
P I V(N I =N I USSR 358
22 0 Y | LSRR 358
2.7.1.The MIC SOUICE Fil@ ... s 358
2.7.2. The MIC Command Line ArgUmENtS...........ccoviiiiiiiiiiiiiei et 364
3. Creating owWn Projects..........cccvvmmmmmmiiiiniieesnr s sssssssnss s 364
3.1. Creating a Makefile and Executing the Program............cccccooiiiiiiniieiiiiiiiiiieeeeeeeeinn 365
3.2. Creating @ TARGET Fil........uiiiiiiiii e 365
XIV. mCAT Release Documentation..............cccommmmmeenicciiiiiiinnneaninens 366
I 1037y 0 366

© 2008 mocom software GmbH & Co KG 15/399

1.1. Porting Existing AppliCations..........coooiiiiiii e 366
1.1.1. Changes NEEEd..........cooo i e e 366
P e O O I T 1Y = = 1 o € RSP 366
S R 7 T O T | o = SR 366
1.1.1.2.1. MsgUpdate, MsgWait, ThreadSleep, ThreadSleepEx, ThreadDelay.............. 367
1.1.1.2. 2. INCIUAETIES..... e e e e e 367
1.1.2. ARM7 WatChPOINES. ... e e e e 367
1.1.2.1. MiISS AlIGNEA ACCESS ...ttt e e e e e eeees 367
1.1.2.2. Structure Member AlIgNMENt.........ccooi e 368
1.1.3. What if | Want to Maintain my Application with both the 2.10 and the 2.207........ 369
(R S e (o 7=] B Ao o P 369
2. Hardware Related Information...........cccceiiiiiicciccmmmer s e 370
2.1. General INformMatioN............ciiiiii e ————————— 370
2.1.1. USRLED and BITBUS activity LED.........coooiiiiiiiiieeeeeeee e 370
2 2 = To To] @7 11 (o) PR 370
2.2. Hardware REFEIENCE.ouuiiiiii et e e e e 371
A T N | I 371
2.2.1.1. CPU + mMCAT CORE/HARD MaCIO.......ceetiiiuiaiiaae e 371
A B Y/ 1= o ¢ o PP 371
0 T T U S {5 371
2.2.1.4. BOOT CONrOL....cciiiiiiiiii ettt ettt e s s s e e e eeeees 371
2.2.2. TSMARMOCPU.....etttteeeeieeeeee ettt eeeeeas 371
2.2.2.1. CPU + mMCAT CORE/HARD MaCIO.......ccciiuiiiiiiiiiiiiiiiieieeeeeee 371
2.2.2.2. IMIBIMOIY ...ttt ettt e 372
2.2.2.3. USRLED. ... 372
A S = 1@ @ B I O] | 1o SRt 372
2.2.3. TSMCPUH2Z.......eeeetttee ettt e e e e e e e e e e e e e as 372
2.2.3.1. CPU + mMCAT CORE/HARD MaCIO.......ccciiuiiiiiiiiiiiiiiieeeeeeeeeee e e e e e e e e 372
A T |V 1= o 4T Y 2SR 372
2.2.3.3. USRLED. ... 373
AR S = 1@ L@ B I @7] 1 o] P 374
2.2, 4, DIN X ittt e ———————————————aatataaaaaaaaanaa s 374
2.2.4.1. CPU + mMCAT CORE/HARD MaCIO........ccuuuiuiiiiiiee et e e e e eeeaanaa s 374
|V 1= o o T o 374
2243 USRLED. ...t 374
2.2.4.4, BOOT CONrOL....ccciiiiiici ettt e e e e e e e e e e e e e e e e e e e s e e eeeaaeees 374

16/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

2.2.5. NETOOOH/H ...ttt e et e e e e e e e e e eeeeeeeaneees 375
2.2.5.1. CPU + MCAT CORE/HARD MACIO.........uutiiiiiiiiiiiiiiee e 375
R T |V 1= o 4T Y2 375
2.2.5.3. USRLED.....ceeeiee e 375
2.2.5.4. BOOT CONEIOL.....utiiiiiiiiiiie ittt 375
2.2.6. ECBCPUOODO0.........coietieeite ettt et e e e et e e e nnnees 375
2.2.6.1. CPU + MCAT CORE/HARD MaCIO........cuueiieeiiiiiiiiiaaeaaaiiiieee e e e aiiieeeee e e e annieees 375
A & T |V, 1= o 4T o N 376
2.2.6.3. USRLED.....ceeiiieie et 376
2.2.6.4. BOOT CONLIOL.....ueieiieeeeiite ettt e e e e e e e e e e e 376
A R = 1 0O RO SSPPPUPPRRN 376
2.2.7.1. CPU + MCAT CORE/HARD MaCTO........uuetiiiiiiiiiiiiiaa e aiiieee e 376
A R Y/ 1= 1 ¢ o PP PPPPPPRPPPPPNt 376
2.2.7.3. USRLED. ... 377
A T = 1@ (@ B I oo { o P 377
2.2.8. TSIMO00.......eeeieite ettt ettt e e e ettt e e e e e s s bttt e e e e e e e e neb e et e e e e e e nnbeeeeeeeeeeenennnees 377
2.2.8.1. CPU + MCAT CORE/HARD MaCTO........cuuiiiiiiiiiiiiiieeeeaiiieiee e 377
2.2.8.2. IMIBIMOIY ...ttt ettt ettt et e e e e e e aaaaaaaeaaeee 377
2.2.8.3. USRLED. ...ttt 377
2.2.8.4. BOOT CONIIOL.....uieeiiieiiiitee ettt e e 377
2.3. The Valid Interrupt-ID (intid) ValUES.........cceeeeiiieeieeeeeeeeeeeeee e 378
3. BOOTMON SLDR Commands..........cccervmmmmmrmrminisssssnnnssssssssssssssssssssssssssssssnnnns 381
3.1. The Serial Line LOADER........ccooi i 381
3.2, Argument FOrM@t.......oooiiiiiiiii e 382
K TG TR I 1 = @7 o 4 =T o T £ 382
3.4. Downloading Motorola S3-HeXflles...........cccccuuiiiiiiiiiiie e 384
3.5. RePIACING MO AT ...t e e e e e e e et e eeeaaans 384
4. Supported Flash Types.......cccuiiiiiiiiiiiiiiiinnnnsssssssssssssssssssss s s s s s snssssssenes 386
N 14 T = G 387

© 2008 mocom software GmbH & Co KG 17/399

Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10
Table 11
Table 12

Table 13

Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:

mCAT 2.20 data types

EDGE XP Quick Overview
COUNTER XP Quick Overview
PULSE XP Quick Overview
VECCOUNTER XP Quick Overview
CAPTURE XP Quick Overview
HTTPD Intrinsic functions: Express|O
HTTPD Intrinsic Functions: INT
HTTPD Intrinsic Functions: SYS

: EEPROM memory logical addressing scheme
DELPAGE NUMBERS

: mCATINF.INI Environment Variables
: Path Replacement Variables

vmake Command line arguments
Passing extra options

Macros used in a linker control file
Address macros used in a linker control file
HEX2IMG Arguments

IMG2HEX Arguments

MIC, the ARG argument

MIC, command line arguments
NETA7 Memory Layout
TSMARMCPU Memory Layout
TSMCPU32H2 Memory Layout
TSMCPUO8H2 Memory Layout
DINX Memory Layout

NET900H Memory Layout

mCAT 2.20

156
182
183
183
189
190
260
261
262
322
328
341
342
346
347
352
352
356
356
361
364
371
372
373
373
374
375

18/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20

Table 28: ECBCPU900 Memory Layout
Table 29: BIT900 Memory Layout

Table 30: TSM900 Memory Layout

Table 31: The Valid Interrupt-1D (intid) Values

Table 32: Supported Flash Memories

376
376
377
381
386

© 2008 mocom software GmbH & Co KG

19/399

Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:

Figure 26:

mCAT 2.20

The mCAT Program Shortcuts 22
wLGO, Changing the COMPORT 23
The mCAT command shell 24
A Successful Compilation 25
Loading a SHX-File from the ComamndLline 26
wLGO Download Progress Bar 26
The Output from Our Example 27
MmCAT message queue 34
A separate queue for message type 104 35
: ThreadSleep 101
: ThreadSleepQueued 103
ThreadSignal 105
MsgWait 113
MsgSend 114
Example Hardware TSMCPU900 with TSM-Bus modules attached 157
ExpressPrograms, linked between driver and IOOBJECT 164
Pulse device: functional description 186
Pulse device: functional description - inverted 187
Pulse sequence generator 188
Counter and Multiplexer architecture of TSMCPUH2 193
Counter and Multiplexer architecture of TSMCPUH2 196
The IP/TCP/UDP protocol Stack 215
URL and argument passing 247
Global and macro argument list 252
wLGO, Changing the COMPORT 354
wLGO, Setting the COM parameter 355

20/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 I. Installing mCAT
l. Installing mCAT

1. A Note to Experienced mCAT Users

Experienced mCAT 2.xx users should read the mCAT 2.20 release notes first!

2. What You Need

1. AMCAT 2.20 Installation CD

2. ARS232 Cable

3. A piece of hardware that has mCAT 2.20 installed

4. A PC running Microsoft® Windows® 2000 or Windows® XP.

3. Install the Software
1. Insert the MCAT Installation CD into your CD-ROM drive
2. Start setup.exe found on the CD.

3. Follow the instructions. Your serial number can be found on a sheet that comes with the
CD.

4. If the installation of mMCAT is finished, you are asked to install additional products. The
least you need is the GNUDE GCC compiler. You may install ADOBE® Acrobat Reader®
to view the documentation online. We also recommend to install the UltraEdit® Program-
mers Editor. Be aware that UltraEdit is shareware and that the UltraEdit to come with

mCAT is a 30 days trial version only. If you like UltraEdit register it at www.ultraedit.com.

5. If you press finish, the installation programs of the individual software packages you se-
lected will be started. Please follow the instructions.

4. Where Can | Find mCAT

Setup.exe creates a shortcut folder named “mCAT2.20” (if you did not change the name) in
your computers Start Menu folder. There you find a link to the this documentation in PDF for-
mat, a link to a index that will guide you to the example code, a shortcut to start an mCAT
command shell and a shortcut to the wLGO Terminal Program you need to communicate
with the mCAT hardware. See the figure below.

© 2008 mocom software GmbH & Co KG 21/399

I. Installing mCAT mCAT 2.20

|§j5tart |J
@B Microsoft Yisual C++ 6.0

B Rechner

4N StarOffice 5.2

m Merknipfung mik ws_ftpaS, exe (2)
B winzip

@ UlraEdit-32

ﬁ, Paint Shop Pro 5

-'3 Packetyzer

{1} Realone Player starten

Im Programme k @ Adobe Acrobat 4.0

@ Cokumente L4 @ Paint Shop Pro 5 L4
E Einstelungen k @ SFIRM k
@ Suchen b &% InstallShisld for Microsoft Wisual C4++ &
@ HilFe @ Mera - Burning Fom

ﬂ Ausfihren... Eii The Bat!

E} Beendan. . @ Inno 3etup 4

wLll ¥ T

(5 AutaTRAY EDA
|E| mCaT 2,20 '@ mZAaT Documentation
@ mCaT Index
@ mCAT on the Web
2 Urinstall mCaT ork:
BE oAt wleo Terminal

Explarer

Figure 1: The mCAT Program Shortcuts

5. Get Connected

Connect the mCAT 2.20 Hardware (TSMARMCPU) with your PC using the RS232 cable.
Prefered and pre-installed comport to use is COM1. On the mCAT hardware, use SERO.
Start the wLgo Terminal-program from the “mCAT 2.20” Start Menu folder. If your mCAT
hardware is powered up and you are connected to the correct serial port you will see
mCAT's start up messages and finally you will get a SYSMON command prompt.

If you have to connect to another comport, you can change the port to use in the WLGO
Menu “Einstellungen->Schnittstelle”.

22/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 I. Installing mCAT

schnittstelle einstellen x|

IEEIM2 "I F.onfiguratian |

(] I Ubemehmenl Abbrechen |

Figure 2: wLGO, Changing the COMPORT

If you have no success, check the WLGO setup. We need 19200-8N1, no handshake to
communicate with mCAT. You will find the setup at “Einstellungen->Schnittstelle->Konfigura-

tion” (the Button shown in the figure above).

Eigenschaften von COM2 21x|

Anzchluzzeinstellungen

Bits pro Sekunde:

L

[atenbits: I a

L

Paritt: | Keine

Lo

Stoppbits: I 1

Lo

Fluzzsteusrung: I K.ein

Standard wiederherstellen |

k. I .-’-'-.I::I::reu:henl Ubernehmenl

6. Try an Example
Open the mCAT command shell and change to directory sysinfo.

Syslnfo is a limited example and for now it is not important what its function is.

© 2008 mocom software GmbH & Co KG 23/399

. Installing mCAT

mCAT 2.20
. =101 x|
Microsoft Windows 2000 [version 5.00.2195] [a]
(C) Copyright 1985-1999 Microsoft Corp.
c:\mcat.220\cc>cd sysinfo
C:\mcat.220\cc\sysinfo>
|

Figure 3: The mCAT command shell

Enter vmake -r. The system shall compile the sysinfo example.

On success, the screen will
look like this:

24/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 I. Installing mCAT

. g [5
Microsoft windows 2000 [Version 5.00.2195] B
(C) Copyright 1985-1999 Microsoft Corp.

c:\mcat.220\ccrcd sysinfo

C:\mcat.220\cc\sysinfo>vmake -r
c:\mcat.220\bin32\cimd -public -auto -init=TaskInit -initmodule -version=1.20 -m
ain=NULL "mCAT/SysInfo" imd.c

*#%% CIMD 1,01 *%%
C:\GNUDE\bin\arm-elf-gcc -D__ARMEL__ -03 -c -Wa,-a -D_INT64 -fomit-frame-pointer

-mlittle-endian -mcpu=arm7tdmi -Ic:\mcat.220\cc\include -Ic:\mcat.220\cc\includ
e \HW\TSMARMCPU\inc -Ic:\gnudelarm-elf\include 1imd.c > imd.Tst
C:\GNUDE\bin\arm-elf-gcc -D_ARMEL__ -03 -c -Wa,-a -D_INT64 -fomit-frame-pointer
-mlittle-endian -mcpu=arm7tdmi -Ic:\mcat.220\cc\include -Ic:\mcat.220\cc\includ
e \HW\TSMARMCPU\inc -Ic:\gnude\arm-elf\include sysinfo.c > sysinfo.lst
c:\mcat.220\bin32\mkTnk std_ram sysinfo imd.o sysinfo.o
C:\GNUDE\bin\arm-el1f-1d -EL --cref -Map sysinfo.map --no-gc-sections sysinfo.LNK
-osysinfo.abs
/cygdrive/c/GNUDE/bin/arm-el1f-1d: warning: cannot find entry symbol __cstart; no
t setting start address
C:\GNUDE\bin\arm-elf-objcopy --strip-all -0 srec --srec-len=64 --srec-forceS3 sy
sinfo.abs sysinfo.shx
c:\mcat.220\bin32\s3patch -T=sysinfo.map sysinfo.shx
#%% SIPATCH 1.02 #+%*

IMD 'mCAT/SysInfo' ¥1.20 found @00402000

ROMSTART = 00402000, RESERVED = 00402000
ROMLENGTH = 00000636, RESERVED = 00004000
RAMSTART = 00406000, RESERVED = 00406000
RAMLENGTH = 00000024, RESERVED = Q0004000

C:\mcat.220\cc\sysinfo>

Figure 4: A Successful Compilation

Now, use wLGO to download the resulting SHX-File to the mCAT 2.20 hardware. There are
two options with wLGO, you can use F3 function key to open a file dialogue to locate and
open sysinfo.shx or — sometimes more suitable — pass the shx file as a command line argu-
ment. Please note that wLGO does not accept a command line argument if it is already ac-
tive. In this case, terminate wLGO.

© 2008 mocom software GmbH & Co KG 25/399

. Installing mCAT mCAT 2.20

=101 x]

Microsoft windows 2000 [version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

|»

c:\mcat.220\cc>cd sysinfo

C:\mcat.220\cc\sysinfo>vmake -r
c:\mcat.220\bin32\cimd -public -auto -init=TaskInit -initmodule -version=1.20 -m
ain=NULL "mCAT/SysInfo" imd.c
w&% CIMD 1,01 *%%
C:\GNUDE\bin\arm-elf-gcc -D_ARMEL__ -03 -c -Wa,-a -D_INT64 -fomit-frame-pointer
-mlittle-endian -mcpu=arm7tdmi -Ic:\mcat.220\cc\include -Ic:\mcat.220\cc\includ
e \HW\TSMARMCPU\inc -Ic:\gnudelarm-elf\include 1imd.c > imd.Tst
C:\GNUDE\bin\arm-elf-gcc -D__ARMEL__ -03 -c -Wa,-a -D_INT64 -fomit-frame-pointer
-mlittle-endian -mcpu=arm7tdmi -Ic:\mcat.220\cc\include -Ic:\mcat.220\cc\includ
e\HW\TSMARMCPU\inc -Ic:\gnudelarm-elf\include sysinfo.c > sysinfo.lst
c:\mcat.220\bin32\mkink std_ram sysinfo imd.o sysinfo.o
C:\GNUDE\bin\arm-el1f-1d -EL --cref -Map sysinfo.map --no-gc-sections sysinfo.LNK
-osysinfo.abs
/cygdrive/c/GNUDE/bin/arm-elf-1d: warning: cannot find entry symbol _cstart; no
t setting start address
C:\GNUDE\bin\arm-elf-objcopy --strip-all -0 srec --srec-len=64 --srec-forceS3 sy
sinfo.abs sysinfo.shx
c:\mcat.220\bin32\s3patch -T=sysinfo.map sysinfo.shx
w%% SIPATCH 1.02 #+%%

IMD 'mCAT/SysInfo' V1.20 found @00402000

ROMSTART = 00402000, RESERVED = 00402000
ROMLENGTH = 00000686, RESERVED = 00004000
RAMSTART = 00406000, RESERVED = 00406000
RAMLENGTH = 00000024, RESERVED = 00004000

C:\mcat.220\cc\sysinfo>wligo sysinfo.shx

C:\mcat.220\cc\sysinfo>

Figure 5: Loading a SHX-File from the ComamndLline

WLGO will start to download the shx and when this is done, the SYSMON command prompt
is available again:

Lade - sysinfo.shx x|

Fartzchritt

Fehler

Figure 6: wLGO Download Progress Bar

26/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 I. Installing mCAT

Syslnit is (like many other examples) compiled to be located in the user RAM (0x402000)

Now, we can start our little example:

2+> init 402000

=10 %]

Datei Bearbeiten Einstellungen 7

2+-init 402000

WCAT VZ2.20 - DEVELOPERS RELERSE 00168
BUILD 402Z2679D

SERNO DAV09Z

2+

Figure 7: The Output from Our Example

The example prints the mCAT version and serial numbers as well as a build or the date of

build. Those values will be different at your system!

7. DONE! The Things to do Next ...

If your installation works, you should start reading the mCAT UsersGuide, study the exam-

ples and consider the release notes.

© 2008 mocom software GmbH & Co KG 271399

Il. mCAT 2 Users Manual mCAT 2.20

II. mCAT 2 Users Manual

1. Introduction

MCAT is a modern real-time operating system designed to fill the gap between operating-
system-less designs (os-less) and full size operating systems. It has a low to moderate

memory footprint and allows fast task switching.

MCAT is a multi-tasking operating system, that relies on message passing to implement in-
ter-task communication as well as synchronization. In this Users Manual, we will give an in-
troduction to multi-tasking and message passing as well as to other major components and
concepts of the mCAT system.

1.1. A few Tips

There are some simple rules that may help to get your fingers around mCAT and that may

also help to successfully use mCAT.

— Don't try to get around the mCAT concepts. If you try to design your own components or
applications using tricks and bits outside the mCAT concept, you will get unreliable and
faulty results. That will also make it very difficult to support you.

- Do not take something for granted! If you use a new feature, read the manual before you

start coding.

- If you have to implement complex calculation or algorithms, place them into a separate
file and develop and debug them using a popular C-Compiler on your PC before you inte-
grate it into mCAT. That can help to minimize in-system debugging and can speed up de-

velopment time.

1.2. What You Need to Know Beyond mCAT

ANSI-C is the language used to develop mCAT components and applications. If you are new
to C, you can learn it along with mCAT. However, our manuals do not give an introduction to
C. There are many good books about C out on the market and you may even find some use-
ful tutorials for free on the Internet (One example available at the time this manual was writ-
ten: http://www.strath.ac.uk/IT/Docs/Ccourse/ccourse.html).

The mCAT manuals also do not give an introduction to basic software design knowledge, for

example a “how to implement serial communication well and reliable”.

28/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

Finally, you need some time to read the mCAT manuals, investigate the examples and to get

familiar with the mCAT concepts. No investment, no return!

2. The Elements of mCAT

And here they are, the elements of mCAT, in order of appearance:

- mCAT Modules — the basic assemblies

- mCAT Threads — the basic executable program units

- mCAT Tasks — the application process

- mCAT Message Passing — connects tasks with tasks and interrupt drivers with tasks.
— mCAT Interrupt Driver — control and handle hardware interrupts

- mCAT Shared Libraries — offer interfaces to shared function libraries

- mCAT Ticker Service — an universal timer service

- mCAT ExpresslO™ — an abstract process i/o layer

2.1. Modules

A module is any piece of binary data, usually — but not necessarily — executable program
code. It can be compiled independently from other modules in a system. It is prefixed by a
data structure called the IMD (Initial Module Descriptor). The most important element of this

structure is a pointer to the executable function Taskinit.

The mCAT operating system scans the entire FLASH memory of a system at startup. For
each valid module found, it invokes the modules Tasklnit() function call. The name may con-
fuse a bit, but TasklInit is not only the place to create and init a task but also to create and init
an interrupt driver or any other kind of module. The name Tasklnit is just used for historical
reasons. Modulelnit() might have been a better choice. Anyway, Tasklnit is a user provided

function. We learn more about this function later.

Please note that Taskinit usually is not directly inserted into the IMD when a program is
written in C. IMD holds a pointer to the c-compiler startup routine (runtime memory initial-
ization, __cstart()) that will call Taskinit after it has completed its duties.

The IMD holds a lot of information, including:

« Module name

© 2008 mocom software GmbH & Co KG 29/399

Il. mCAT 2 Users Manual mCAT 2.20

Module version

Module build time (binary, UNIX time format)

Module memory requirements (mCAT 2.10R00185 and higher)
The name and version is printed to the system console at startup.

Please note that mCAT itself consists of a set of independent modules.

2.2. Threads

A thread is an independent program that can be executed semi-concurrently with other
threads. With the current version of mMCAT, the thread with the highest priority runs until it
enters either a wait condition (via functions MsgWait(), ThreadSleep() or ThreadSleep-
Queued() or ThreadDelay()) or another higher priorized thread becomes ready to run (by
leaving a wait condition). It is important to know the concept of threads, even if until you
have a very advanced application you may find no need to deal with threads directly. You will

find all details about threads in the mCAT Kernel Reference.

2.3. Tasks

Threads are restricted to exist within a task only. A Task is an mCAT module that is address-
able by the mCAT Message Passing (see below) and that hosts at least one thread (the
main thread). Tasks are the most important concept to implement an application using
mCAT.

Tasks are globally addressable using their task id or task number (two names for the same
thing). It is an integer number in the range of 0..MAX_TASKS (MAX_TASKS is 16 while this
documentation is written). An mCAT task also has a name (up to 16-Char). A task is the

frame for an application program.
Writing an mCAT application means to write a task in 98% of all cases.

That is all you need to know about tasks up to now. We will come back to tasks and applica-
tion design in chapter [.3. Putting it all Together.

30/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

2.4. The mCAT Message Passing

Message Passing is a technique to implement interprocess communication (in mCAT: inter-
task communication). A message can be assumed as a data structure holding user informa-
tion that is passed from one task to another. To be useful, a message must have properties
to:

— ldentify the sender

- Identify the receiver

- identify the type of message (and thereby the type of user data included)
Optionally it should also carry the length of the message and an error indicator.
A simple real-world example may be helpful at this point:

Lets assume we have 2 persons ('tasks’): Alice and Bob. Bob works in a store and Alice

needs something from Bobs store — lets say real Java beans.

1. Alice takes a long deep look into the yellow pages. She picks Bobs store.
2. Alice dials the number of Bobs store.

3. Bob answers the phone. He identifies himself. “Hi, here is Bob!”

4. Alice also identifies herself: “Hi, my name is Alcie. | like to order 1kg of your best Java
beans! My address is BeachHouse, Halfmoon Bay”.

5. Bob Acknowledes the order “Well, 1kg of our finest Java! To Alice at Halfmoon Bay.
Thank you for the order!”.

6. Now they can quit the phone conversation. The Java will be delivered the other day.

So what can we say about Alice and Bob and their conversation?

2.4.1. Bob
Lets start with Bob. We can say about Bob that he:
- Offers a service (Bobs store, selling Java).

- He has a phone number and this number is published in a common directory service (Yel-
low pages). We can say Bob is addressable.

— His major job is waiting for incoming calls (orders).

© 2008 mocom software GmbH & Co KG 31/399

Il. mCAT 2 Users Manual mCAT 2.20

All these will qualify Bob to be a server. A server offers a service, has that service listed in a

publicly available directory service and lingers most of his time waiting for incoming orders.

2.4.2. Alice
What can we say about Alice?
- Alice needs a specific service (like many others too!)

— Alice uses a publicly available directory service to find a provider who is able to deliver the
service Alice needs.

- Alice calls Bob to send him her order. We can say: She sends him a message!

Alice finally receives Bobs service.

If Bob is a server in our model, Alice is the client. She needs Bobs service. She may not
know Bob or Bobs phone number before she needs his service. The contact is made via a

publicly available directory service.

2.4.3. mCAT Implementation of Clients and Servers

If we transfer the Alice and Bob example to mCAT, we have to design a server task and (at
least) one client task. With mCAT, a message from the client to the server (the order in or

Alice/Bob example) is called a request. The answer Bob upon an order is called a reply.

Note: The structure and contents of a message is defined by the designer of the spe-

cific service within the server.

2.4.3.1. MCAT Message ID

Every mCAT message has a specific message id. This type code, a 32-Bit integer, is created
by mCAT at runtime and registered in a database. The key to that database is a readable
string assigned by the designer of the service. A server uses the function MsgldCreate()to
register a message id (and doing so a service offered by the server) and a client uses Ms-
gldQuery() to search the database for a specific message id (a service). The information
stored in the message id database includes all addressing and routing information the client

needs to send a request to the server.

32/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

2.4.3.2. MCAT Messages

An mCAT message is a data structure starting with a common entry called the message
header. Its data type is MSG. This structure is 22-Bytes long and holds all information need-
ed to transport the message from source to destination. Beside other data values it includes:

- The message id value (in the field type)

- The message source task (in the field src, needed for to be able to send back a request

to its requester)
— An error indicator

- Priority fields

2.4.3.3. Using Priorities

In contrast to our Alice & Bob example, mCAT is capable of assigning priorities to its mes-
sages. With a request, you can not only assign the priority the request should have but also

the priority the reply should use on its way back to the client.

An mCAT task/thread receiving a message will inherit the priority of an incoming message

and execute the desired service at this priority.
Note:

For many cases, the MsgUpdate() function simplifies priority handling for clients by implic-
itly inserting the clients current priority into the priority fields within the request. However,
MsgUpdate() is not always usable. Refer to the mCAT Kernel Reference for details on
priorities and the MsgUpdate() function.

2.4.3.4. Memory Management and Message Passing

MCAT uses a "store and forward message passing” implementation. As a consequence,
only a pointer to the message is actually passed from one task to another. No data is copied.

The message is still a part of the senders dataspace.

A user must take this into account. If a statically allocated message is send to another task,
the user MUST take care that this message is not modified by the sender until the sender re-
ceives the reply to this message. Again, the use of MsgUpdate() can make things simpler,
because this function sends a request and waits until the related reply is received without
consuming cpu time. This implies that there can be no memory usage conflicts using Ms-

© 2008 mocom software GmbH & Co KG 33/399

Il. mCAT 2 Users Manual mCAT 2.20

gUpdate(). If MsgUpdate() is not used to implement the clients message interface it may
make sense to use a message pool. A message pool is a construct to allocate fixed-length

message buffers from a limited pool.

2.4.3.5. Message Queues and using Multiple Queues

An mCAT task or interrupt driver queues all incoming messages until they are read by the
task. A task is usually designed around a central infinite loop, the message loop. First state-
ment in that loop is a MsgWait(). This function will try to retrieve a message from the mes-

sage queue.

4 ™
|Arrival] | Type| Prio | Sre | Data |
6 101 2 3 Data
4 101 2 3 Data
2 103 5 2 Data
1 104 5 3 Data
5 102 | 10 o Data
3 101 20 3 Data
Kss Task #1 saoab

Figure 8: mCAT message queue

If at least one message is waiting in the queue, it is fetched and the current thread is
switched to the messages priority (exception: If the task runs in fixed priority mode). If no

message is pending, the task will terminate execution and sleep until either an optional time-

34/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

out occurs or a message is queued. Please note that the messages are queued sorted by
time and priority! The message with the highest priority is retrieved first. Messages with the

same priority are sorted by time of arrival, oldest first.

- ™
[Arrival] | Type [Prio [Src [Data | [Arrival] [Type [Prio | Src [Data |
3] 101 2 3 |Data
4 101 2 3 |Data
2 103 5 2 |Data
3 102 | 10 5 |Data
5 |[101 [20 | 2 |Deta [1 |[10d] 5 | 3 |Data
L Task #1 P

Figure 9: A separate queue for message type 104

When it comes to practical application design, there can be a situation, when specific types
of messages need to be handled in specific states of the application. Receiving them in the
main loop, the programmer will have the need to store those messages somewhere until he
needs them. An easier and more elegant way to handle such situations is to create an indi-
vidual queue for those message types. All messages whose message types are not as-

signed to a specific queue are stored in the default queue.

2.5. Interrupt Drivers

MCAT supports a straight Interrupt Driver model. An interrupt module can handle interrupts
natively and send mCAT messages in response to those events. They can also receive mes-
sages form both, tasks and other interrupt drivers. Writing interrupt drivers is a very advance
project that is in good hands of an experienced mCAT user. The details about writing inter-

rupt drivers can be found in the mCAT Kernel Reference.

© 2008 mocom software GmbH & Co KG 35/399

Il. mCAT 2 Users Manual mCAT 2.20

2.6. Shared Libraries

Shared Libraries are also designed to offer different clients a service. In contrast to a server
implemented in a concurrent task and interfaced by message passing, a shared library offers
synchronous services only. That implies that they — usually - can not manage shared re-
sources and handle multi-tasking (as usual there are exceptions, but only a few and they are
hidden very deep in the system, like the Memory Management API).

However, a shared library can save resources. If there are functions and constant data used
by several tasks, it is much more efficient to move this code into a shared library than to link
the code with every task separately. So it will consume the memory it needs only once. If it
needs to handle resource allocation, it may interact with a message based server by using
the MsgUpdate() function.

Please note that the mCAT-Kernel itself is a shared library.

2.7. The Ticker Service

In most applications its necessary to do things in a fixed cycle or related to some timing con-
strains. Maintaining timeout control, regularly checking of a device state or sampling data —

you need a timebase to implement those applications.

If an mCAT task needs such a service it can rely on the Ticker. Using a simple function
TALL() the task requests the Ticker to periodically send a message to the task at a given fre-
quency. Because the ticker message is a standard mCAT message it is easy to handle. Its
just another if-statement in the central message loop of an application. Our first and widely
referenced example “TickTest”. A Ticker-Example is for a realtime operating system what

“hello world” is for desktop programming systems.

2.8. ExpressiO™

ExpresslO™ is an process I/O abstraction layer. It provides fast and lean methods to access
process |/O like event counters, position encoders and analog or digital 1/0. ExpresslO™ ap-
plications are portable if they are moved to different hardware — as long as the new hard-
ware also supports ExpresslO™. In chapter “The Gifts of Express/O” we will present a sim-
ple ExpresslO™ example. More details about ExpresslO™ can be found in the documenta-

tion.

36/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

2.9. Memory Management

With MCAT we use a very simple allocate-and-never-free approach to memory manage-
ment. This is driven by the believe that an embedded system should be designed in a way
that dynamic memory allocation should be restricted to system startup configuration if possi-
ble.

For highly dynamic memory management requirements with limited flexibility, like message
buffer management, we offer The Message Pool API. A message pool is a fixed size memo-
ry area that is splited into a fixed number of buffers of a unique length. Allocation and Deallo-

cation of a buffer from a Message Pool is very fast.

2.10. C Programming Style and supplied MACROS

Working with our examples you will find that we predefined a few macros that are not mCAT

specific and not common for C. Here is the place to introduce them:

2.10.1. PRIVATE, PUBLIC and EXTERN

If not labeled with the static attribute, all function names and global variables of a c-source
file are exported and are visible to other files when the linker is finally putting it all together.
That is not a very helpful feature of C and we believe it is a good idea to explicitly label ALL
functions and global variables using our macros PUBLIC (=> export name) and PRIVATE
(=> do NOT export name). | do not know who did this first but | picked the use of PRIVATE
and PUBLIC from operating system designer Andrew Tanenbaum who used them in his

MINIX operating system.

We also add the macro EXTERN It fixed some compiler limitations of an early Toshiba C-
compiler. It is used in conjunction with PUBLIC. One file declares a variable or function pub-
lic, another declares the same as EXTERN.

Please note that PUBLIC and PRIVATE should NEVER be used to label local vari-
ables (variables on stack). Local variables are always private to the scope of the

current function.

2.10.2. Loop

With mCAT, most tasks will be designed around a central infinite loop that handles incoming
messages. The C programming language does not support an infinite loop by a statement.

Usually programmers use something like

while (1) {

© 2008 mocom software GmbH & Co KG 37/399

Il. mCAT 2 Users Manual mCAT 2.20

// infinite loop

to implement infinite loops. This reads not very intuitive. So we wrap this statement using a
macro:

#define loop while (TRUE)

Loop can be used as for() or while() loops:

loop {
msg = MsgWait (0,0);
if (msg->type == ticker->id) {

} /* endloop */

2.10.3. ARRAYSIZE

The size of an static array is hard to determine. The sizeof operator will return the size in
bytes. This will not help if you need the size in terms of items. A simple example will show up
the problem:

int my arrayl[7];
int my function sum of array()
{
int sum, i;
for (sum=0,1=0;i<7;1i++) {
sum += my arrayl[i];
}

return sum;

The function my_function_sum_of_array() will add up all items in my_array][]. So far it works.
However, if | change the array size, | have to change the function as well. One common so-
lution to this problem is the use of static macros:

#define MY ARRAY SIZE 7
int my array[MY ARRAY SIZE];
int my function sum of array()
{
int sum, i;
for (sum=0,i=0;i<MY ARRAY SIZE;i++) {
sum += my arrayl[i];
}

return sum;

This is much better. Changing the macro MY_ARRAY_SIZE will be sufficient. But there is an
even smarter solution available:

int my arrayl[7];
int my function sum of array()

38/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

int sum, i;

for (sum=0,1i=0;i<ARRAYSIZE (my array);i++) |
sum += my arrayl[i];

}

return sum;

}

The macro ARRAYSIZE() will calculate the size of an array in items in a reliable and portable
way. And the calculation will be done at compile time, so there is no penalty to pay for using
it. And here is the implementation of ARRAYSIZE:

#define ARRAYSIZE (x) (sizeof (x) /sizeof (x[0]))

2.10.4. ALIGN

ALIGN(val,al) returns a value that is multiple of al and not smaller than input value val. The
macro works with any value of al, even if alignments to binary boundaries (2,4,8,..) are the
most common usage of alignment operations. Modern compilers will detect binary boundary

operation and optimize the code as needed.
#define ALIGN (val,al) ((((val) + ((al)-1)) / (al)) * (al))

3. Putting it all Together

3.1. A Simple Example: TICKTEST

To get a first idea about how the actual code looks like, here's an example of a simple pro-
gram that prints out a counter every 1/10 seconds to the terminal serial line. To accomplish

this, it will request the ticker service to send a message every 1/10 second to the task.

3.1.1. Includes Needed

Program text starts including the necessary header files. MCAT.H is the main include file, it-
self including headers like IMD.H, MSG.H etc., where the basic data structures of mCAT are
defined. TICKER.H provides the ticker message structure and the function definitions for
TALL and TAFTER, while SIMPLEIO.H defines basic serial line i/o-functions. Since mCAT
210-R160 and later SIMPELIO provides std. C output functions printf() and fprintf() beside
some basic functions like WrStr() used traditionally with mCAT. The only limitation to
printf/fprintf implementation in SIMPELIO is that float point types (double and float) are not
supported. To output those, use sprintf to format a buffer and send the buffer to the serial
line using printf.

© 2008 mocom software GmbH & Co KG 39/399

Il. mCAT 2 Users Manual mCAT 2.20

3.1.2. TasklInit

The INIT part of the task - Taskl/nit() - follows. Because there is no need for specific initializa-
tion, we just create and start the main task using TaskStartup().

TaskStartup creates a task, assigns a task number (returned into Self) and activates it im-
mediately at the priority given in the IMD. It will retain this priority until it gets its first mes-
sage, whereafter it is put to the priority of the message. The last parameter of TaskStartup()
is set to 0 as we don't want more than the default message queue.

The macros Protect() and UnProtect() are wrappers to ThreadProtect()/ThreadUnProtect().
The code between them can not be interrupted by a task switch. They are used to implement
critical sections. It is recommended to handle Taskinit() as a critical section, because if the
code is executed on behalf of SYSMON's init command for test purposes the behavior is un-
predictable if it is not protected. If the task is moved to FLASH and Taskl/nit() is executed by
the mCAT bootloader this protection is not needed — but it will not harm either. So its better

to always handle this as a critical section.

3.1.3. TaskMain()

TaskMain() is the main part of the task, it would be main() in a standard C environment. First
local variables are declared. Our variable pock is going to be the counter variable that we will

print out as the number of messages received.

The TALL-function is parameterized to use the message tick to be sent all 100 milliseconds
at a priority of 200 to my task.

The program continues as an endless loop. At the beginning of the loop, you notice the

probably most often used mCAT call: MsgWait(queue _handle,timeout).

MsgWait tells mCAT to wait for an incoming message at queue 0 in our example, which is
the default queue that gets all messages that don't have a special queue opened. A timeout
of SYS_WAIT_INIFINITE indicates that it will wait forever if no message arrives, a long value
greater zero would define a timeout in milliseconds. The function would return a NULL point-

er in case of a timeout.

When MsgWait returns a message, the program has to check its type. As we are waiting for
a message from ticker, the type field in the msg data structure (msg->type) must contain the
ID of a TickerMsg. If this is correct, the ticker has to be notified that the message arrived ok.
mCAT provides the function MsgSendReply for this. It returns the message with a hand-
shake value of ACK or NAK.

40/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

Il. mCAT 2 Users Manual

If the arriving message was a message from ticker, the MsgSendReply is returned with ac-

knowledge, pock is incremented and printed to the terminal serial line. If the message is un-

known, it will be refused with the reply value NAK. After this, a new MsgWait is issued in the

loop.

This is a complete tas
program or a regulato

k under mCAT and may serve to extend it to an analog input scanning
r task for your own application.

3.1.4. The Source Code

/*
* ticktest

*

* (c) 1999-2004
*

* File: ticktes
*

* History:

*

* date

K e
* 20.09.1995

* 13.04.1999

* 02.06.2004

*

K e
*/

#include <mcat.h>
#include <ticker.h>
#include <simpleio.
#include <ansi.h>
#include <string.h>

PUBLIC INTEGER
/* _________________
/* INIT TASK

/* _________________

void TaskInit (IMD

{
INT16 error;

mocom software GmbH & Co KG

t.c

version author comment

V1.00 VG created
v1i.01 VG updated, new code to find sysmon
Vv1.10 VG using SysmonEnable to deactivate/reactivate

SYSMON. Updated comments.

EST
___ */
COMPILED WITH TOSHIBA C, Metaware HighC and GCC for ARM */
___ */

/* mCAT functions and datatypes */

/* ticker msg and functions */
h> /* Simple, non standard io functions */

/* ANSI-Terminal control */

/* std. c striung functions */
Self;
___ */

*/

___ */
*imd)

/* you may or may not check for errors.
There must be a fundamental problem if
the task will not start */

© 2008 mocom software Gmb

H & Co KG 41/399

Il. mCAT 2 Users Manual

mCAT 2.20

PRIV

{

{

Protect () ; /*

This is necessary to avoid problems while
init the task from within the monitor */

Self = TaskStartup(imd,FromTop, &error,0) ;

ATE TickerMsg tick;

void InitScreen|()

/* imd = pointer to own imd
FromTop = allocate task number starting from
the highest available down to 0
error = pointer to a error variable
0 = reserve no space for extra
queues. The default queue is
not affected by this statement. */
UnProtect () ; /* re-allow task switching */
}
2 */
/* DECLARE YOUR VARIABLES HERE */
/* The macro PRIVATE makes the symbols local to this file. */
2 N ———————— */

/* used to request service by the ticker */

// Disable sysmon using 'SysmonEnable (FALSE) '

if (!SysmonEnable (FALSE))

TraceWriteLog ("CAN'T DISABLE SYSMON - EXIT\n");

TaskDelete (Self) ;
} /* endif */

// clear screen and print banner

clrscr(); /*
gotoxy (2,3); /*

CLEAR SCREEN */
SET CURSOR */

printf (" *** TICKTEST 1.0 ***\n\n");

gotoxy (2,18); /*

/* hello */
STATIC TEXT */

printf ("Press any key to exit ...");

(
(

gotoxy (13,10);
(

printf("1/10 sec since start.");

void TaskMain ()

lword pock; /*
MSGID *TickerId; /*
MSG *msg; /*
pock = 01; /*

TickerId = TALL(&tick, 1001,

if (TickerId == NULL) {

a "tick counter" */
ID of tickermsg */
a pointer to handle incoming messages */

clear tick counter */

200,Self);
/* request the ticker to send "tick"
all 1000ms (lsec) to ourself (Self)
using a priority of 200 */

42/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

TraceWriteLog ("TALL failed\n");
TaskDelete (Self);
} /* endif */

// setup screen
InitScreen();

2 R EE———— */
/* Ensure that you NEVER return from this TaskMain function! */
/* The only way to exit is to call "TaskDelete (Self);" */
2 .. */
/* loop is a c-macro "#define loop while(1l)". It is defined in

"vtype.h", included by "mcat.h" */

loop {
/* using SYS WAIT INFINITE is portable between ARM & TLCS900.

On TLCS900 platform 0 is used to signal no wait, on the
ARM platform we use -1. */
msg = MsgWait (0,SYS WAIT INFINITE); /* wait for a msg. Timeout is NULL,
use default queue "0" */

/* we got a msg. Check if it was a ticker msg */

if (msg && msg->type == TickerId->id) {
/* ____________________ */
/* IT'S A TICKER MSG */
/* ____________________ */

MsgSendReply (&tick, Self,ACK) ; /* Acknowledge FIRST! */
gotoxy (8,10);
printf ("%d", ++pock) ;
if (kbhit() || pock > 150) {
RdChar () ;
clrscr();
// reenable SYSMON and kill ourself.
if (!SysmonEnable (TRUE)) {
SysReset () ;
} /* endif */
TaskDelete (Self) ;
} /* endif */
} else if (msg) {

/* ____________________ */
/* UNKNOWN MSG! */
/* ____________________ */

MsgSendReply (msg, Self,NAK) ;
puts ("™ *** FAIL ***\n");
} /* endif */
} /* endloop */

3.1.5. Creating the Makefile

A makefile is used to control the compilation process.

© 2008 mocom software GmbH & Co KG 43/399

Il. mCAT 2 Users Manual mCAT 2.20

#

Project: TICKTEST

Author : VG

Date : 02.06.2004
#

PROJECT = TICKTEST

memory spec
TARGET = std ram

optional c-compiler options
CMD=-D$ (HARD)

list of object files. File holding the IMD must be the first in the list.
OBJFILES = imd.$ (REL) $(PROJECT) .$ (REL)

list of include files
INCFILES =

build rule, same with all projects

$ (PROJECT) .shx: $(OBJFILES)
$ (MKLNK) $ (TARGET) $ (PROJECT) $ (OBJFILES)
$(LD) $(PROJECT) .LNK -0$ (PROJECT) .abs
$ (CONVERT) $ (PROJECT) .abs $(OF) $(PROJECT) .shx
$ (S3PATCH) -1=$(PROJECT) .map $ (PROJECT) .shx

individual dependencies
$ (PROJECT) .$ (REL) : $ (PROJECT) .c $ (INCFILES)

build rule for 'imd.c', rebuild when makefile was changed.
cmd {-options} <name> <file.c>
imd.c: makefile
$(CIMD) -public -auto -init= cstart -version=1.10 mCAT/TickerTest imd.c

3.1.5.1. Selecting a Target Memory Description

One important question to answer is: Where to place my code & data? MCAT does not man-
age this on its own.

For non-complex projects, this is easy to answer. MCAT reserves an area in RAM and
FLASH for small projects. Using RAM, starting at 0x402000, it is easy to download and test
modules. No FLASH specific handling (deleting) must be considered. Moving the project to
FLASH gives it the ability to auto-start after reset.

In more complex projects, each module may reside in a different FLASH page. Each module
needs separate areas in the RAM space to store variables.

44/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

MCAT use so-called TARGET files to control the address settings. A sample TARGET file

looks like:

[ADDR]

ROMSTART=0x800000
RAMSTART=0x412000

ROMLENGTH=0x10000
RAMLENGTH=0x10000

Please note that ROMSTART/ROMLENGTH are used to define an area to store constant
data (program code and constant values). RAMSTART and RAMLENGTH are used to define
an area to store dynamic data (variables). The names do not determine that the ROMXXXX
section MUST be located in FLASH memory! For testing, this can be located in RAM as well:

[ADDR]

ROMSTART=0x402000
RAMSTART=0x412000

ROMLENGTH=0x10000
RAMLENGTH=0x10000

The memory definition is set in the makefile using the macro TARGET. The value set is the
TARGET files name without extension (extension must be .trg). The above examples are
the standard TARGET files std_ram & std_rom, used to cover simple projects and provided

along with mCAT. All examples provided use one or both of these TARGET files:

memory spec
TARGET = std ram

3.1.5.2. Generating the Initial Module Header (IMD)

The Initial Module Header is generated by a tool called CIMD.EXE’. This tool sets up all
fields of the structure and calculates a proper hash code. The hash code is calculated from
the modules name. Together with the pattern AA 55 (a 16-bit integer, 0x55aa, little endian)
the hash code is used to verify the validity of an IMD.

The IMD is written into a separated file. This file should not be edited manually! It looks like
this:

// Generated by CIMD.EXE
// Do not edit manually

#include <mcat.h>

1 With previous versions of mCAT a tool called IMD.EXE was used to generate IMD's. This tool is ob-

solete, do not use it anymore

© 2008 mocom software GmbH & Co KG 45/399

Il. mCAT 2 Users Manual

mCAT 2.20

INTEGER TaskMain (void);
INTEGER _ cstart (IMD *imd);

#define VERSION "1.10"

#define NAME "mCAT/TickerTest"
#define PATTERN 0x55aa

#define ID Oxff

#define PRIORITY 128

#define MAINCALL TaskMain
#define INITCALL __cstart
#define IMDNAME taskimd
#define MODE MODE_TASK
#define HEAP 0

#define CHECKSUM 29391

#define SCOPE PUBLIC
#define STACK 1024 // 0x400
#define BUILD 0x112d2d11

SCOPE const IMD IMDNAME = {
PATTERN, INITCALL, MAINCALL, STACK,
HEAP, BUILD, PRIORITY, MODE,

ID, VERSION, NAME, CHECKSUM

}i

The advantage of generating a C-Source file is that this file is compatible across the mCAT

platforms (ARM,TLCS900). Please note that almost any option in the header can be

changed by means of CIMD.EXE arguments:

*x%k CIMD 1.01 ***
cimd {options} <name> <imdfile.c>

options are:

-public : imd structure is public (default private)

-auto : autostart option, default is 'no autostart'
—-interrupt : setup imd mode MODE INTERRUPT (default=MODE TASK)
—-initmodule : setup imd mode MODE INIT (default=MODE TASK)
-version=#.## : set initial version, default=1.00

-priority=### : set initial priority to ### (0 < priority <255),
-stack=#### : set stack size, default is 1024

-init=<name> : name of the init call, default is cstart
-main=<name> : name of the main call, default is TaskMain
—-imd=<name> : imd structure name, default is taskimd

default=128

For example, if the option -auto is not given, the pattern AA 55 is not written to the structure.

Instead the pattern FF 55 is used. The module is not auto start able in that case. However,

using SYSMON's val command it can be changed into an auto-start module at runtime if it is

located in FLASH memory. See SYSMON documentation for more information on val.

46/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

CIMD should be integrated into a projects makefile. The generated object file must be the
first in the link sequence. In our example, we use the filename imd for the generated file
(imd.c, imd.$(REL)):

list of object files. File holding the IMD must be the first in the list.
OBJFILES = imd.$ (REL) $(PROJECT) .$ (REL)

It is recommended to make the imd source file (imd.c in our case) depending of the makefile
itself. So we force a re-generation whenever an argument to CIMD is changed:

build rule for 'imd.c', rebuild when makefile was changed.
cmd {-options} <name> <file.c>
imd.c: makefile
$(CIMD) -public -auto -init= cstart -version=1.10 mCAT/TickerTest imd.c

3.1.6. Compile and Download

To compile TICKTEST, follow the steps:

- Open mCAT command line

- Change to the directory where TICKTEST is located (<mcat_dir>\cc\ticker)
- enter vmake

The resulting output should look like:

C:\mcat.220\cc\ticker>vmake
C:\GNUDE\bin\arm-elf-gcc -D ARMEL -03 -c -Wa,-a -D INT64 -fomit-fra
me-pointer -mlittle-endian -mcpu=arm7tdmi -Ic:\mcat\mcat\arm\cc\include -Ic:\mca
t\mcat\arm\HW\TSMARMCPU\inc -Ic:\gnude\arm-elf\include -DTSMARMCPU TIC
KTEST.c > TICKTEST.lst
c:\mcat\bin32\addfile TICKTEST.cll TICKTEST.c
C:\GNUDE\bin\arm-elf-gcc -D_ARMEL -03 -c -Wa,-a -D INT64 -fomit-fra
me-pointer -mlittle-endian -mcpu=arm7tdmi -Ic:\mcat\mcat\arm\cc\include -Ic:\mca
t\mcat\arm\HW\TSMARMCPU\inc -Ic:\gnudel\arm-elfl\include -DTSMARMCPU imd
.c > imd.1lst
c:\mcat\bin32\addfile TICKTEST.cll imd.c
c:\mcat\bin32\mklnk std ram TICKTEST TICKTEST.o imd.o
C:\GNUDE\bin\arm-elf-1d -EL --cref -Map TICKTEST.map --no-gc-sections
TICKTEST.LNK -oTICKTEST.abs
C:\GNUDE\bin\arm-elf-objcopy --strip-all -O srec --srec-len=64 --srec-
forceS3 TICKTEST.abs TICKTEST.shx
c:\mcat\bin32\s3patch -s=240 -1=TICKTEST.map TICKTEST.shx
x S3PATCH 1.02 *

IMD 'mCAT/TickerTest' V1.10 found Q00402000

ROMSTART = 00402000, RESERVED = 00402000
ROMLENGTH = 0000090A, RESERVED = 00010000
RAMSTART = 00412000, RESERVED = 00412000

RAMLENGTH = 00000094, RESERVED = 00010000

© 2008 mocom software GmbH & Co KG 47/399

Il. mCAT 2 Users Manual mCAT 2.20

C:\mcat.220\cc\ticker>

To download the resulting image file (ticktest.shx) into the mCAT node, use wigo.exe:

C:\mcat.220\cc\ticker>wlgo ticktest.shx

C:\mcat.220\cc\ticker>

Note: If wigo is already running, it will NOT start the download process. In this case, exit

wigo or open the download dialog using the key F3.

3.1.7. Execute and Debug
Once the program is successfully loaded, it can be started using the SYSMON command
init 402000.

This command executes a modules Taskl/nit() function of the module located at 402000 —
and that is the usual location for RAM based test programs and the location we choose for
TICKTEST.

TICKTEST will clear the Terminals screen and display the counter:

To exit TICKTEST, press any key.

Great! To terminate the session, the reset command is your choice:

2+>reset

3.2. A Example using ExpresslO

ExpresslO is an abstract interface to the process i/o hardware. It is an important part of the

mMCAT programming environment.

3.2.1. The Gifts of ExpresslO

ExpresslO makes it easy to structure and access physical process i/o. It allows the creation
of i/o objects that may inherit software implemented features (called ExpressPrograms) not
native to the physical i/o. Those features include counters, edge detectors and pulse genera-

tors.

48/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

With ExpresslO one can address a physical i/o directly using its physical location informa-

tion:

- The channel number of a

- module that is attached to a specific
- bus.

This triplet bus.module.channel can also be used to create an ExpresslO IOOBEJCT.
Once an IOOBEJCT is created, one can access i/o using the object and no longer worrying
about the triplet. Accessing all i/o in a program via IOOBEJCTS makes it easy to port, adapt
and enhance a program. To port it to a different hardware or to route a i/o to a different
physical port, just the JOObjCreate() function has to be changed. To make this even more
convenient, it is recommended to keep the creation and configuration of IOOBJECTS in a
single function at the beginning of your program. The recommended name of this functions
is SYSTEM().

In our example, you will see how to create an IOOBJECT, how to inherit a ExpressProgram,
how to subscribe events generated by the ExpressProgram. Running the program from
SYSMON will show how useful it is to have both options: addressing a raw i/o via the triplet
bus.module.channel and via the named IOOBJECT.

3.2.2. The Source Code

/*
* EDGE

*

* (c) 2004 mocom software GmbH & Co KG

*

* File: EDGE.C

*

* Created: 02.06.2004 11:11:06 VG

K e
*

* History:

*

* date version author comment

K e
* 02.06.2004 Vv2.00 VG derivated from an older version

K e
*/

#include <mcat.h>
#include <xio\express.h>
#include <simpleio.h>
#include <ansi.h>

© 2008 mocom software GmbH & Co KG 49/399

Il. mCAT 2 Users Manual

mCAT 2.20

// needed for C startup code

PUBLIC INTEGER Self;

* file-local variables

*

*/
PRIVATE IOOBJECT em stop; /* input,

* ExpressIO initialization function.
*

*/

INTEGER SYSTEM
{

O

INTEGER error;

// create IOObject and store error code.

// BUS_TYPE CPU,CPU_DIN,0 (aka CPU.1.0)

error = IOObjCreate (&em stop,
"EMERGENCYSTOP",
BUS_TYPE CPU,
CPU_DIN,

0,

CLASS DIGITAL,

"EDGE") ;

// display error code on fail

if (error != IOERR OK) {
printf ("IOERR =
return FALSE;

} /* endif */

%d\n",error) ;

// great, we created an IOOBEJCT!
return TRUE;

*/
void TaskInit

{

(IMD *imd)
short error;
Protect () ;

Self = TaskStartup (imd, FromTop, &error,0)
UnProtect () ;

emergency stop

*/

We bind the i/o port
to a named IOOBEJCT.
// The object inherits the EDGE detector ExpressProgram.

/7
//
/7
//
//
//
//

’

the ExpressIo object
a human-readable name
(CPU|TSM|I2C...)
(CPU_DIN)

(I1 on CPU)
we need a digital input!

select a bus
select a module
select a channel

inherit a edge detector

50/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

* Main function

*/
void TaskMain ()

{

XPEvent em_stop_ evt; // the io-event message
// a derivate of a std. MCAT message
MSGID *xpevtid; // msgid for subscription
MSG *msg; // pointer to any type of message
INT32 em data; // value of EMSTOP
INTEGER res; // return code of WAITIO()
UNSIGNED len; // length
UNSIGNED evtid; // eventid

// print banner.
printf (" *** EDGE DEMO ***\n\n");

// init ExpressIO

if (!SYSTEM()) {
TraceWriteLog ("ExpressIo Init failed\n");
TaskDelete (Self) ;

} /* endif */

// subscribe em stop evt, trigger on both edges

xpevtid = XPEventSubscribe (&em stop_ evt, // the event
1, // a user selectable event id
s&em_stop, // the IOOBJECT
I0_EVT BOTH, // event request mask
SYS WAIT INFINITE, // timeout
sem data, // pointer to data
1); // size of em data in INT32

if (xpevtid == NULL) {
printf ("ERROR: Can't subscribe\n");
TaskDelete (Self) ;

} /* endif */

// main loop

loop {
msg = MsgWait (0, SYS_WAIT_INFINITE) ;
if (msg && msg->type == xpevtid->id) {

// 1f we use msg here, we renew allways the correct
// event
XPEventRenew ((XPEvent*)msg, &len, &evtid) ;
// handle the events
switch (evtid) {
case 1:
// EMSTOP
if (len) {
printf ("EMSTOP=%d\n",em data);
} else {
printf ("ERROR: No data read\n");
} /* endif */
break;

© 2008 mocom software GmbH & Co KG 51/399

Il. mCAT 2 Users Manual mCAT 2.20

default:
printf ("ERROR: Unknown XPEvent\n");
} /* endswitch */

} else {
printf ("ERROR: Unknown MSG\n") ;
} /* endif */

} /* endloop */

TaskDelete (Self) ;

3.2.3. Compile and Run

To run the example, it is necessary to connect the used digital out- and input. In this case we
use the digital output 0 (marked O1) and the input (marked I1) of the CPU itself.

Now we can inspect the system using the ExpresslO commands of the SYSMON system

monitor. First we use XLIST to get a list of installed modules and their ordinal numbers:

2+>x1ist modules

BUS=CPU MODULE=01h TYPE=TSMARMCPU-DIN CHANNELS=08

BUS=CPU MODULE=02h TYPE=TSMARMCPU-DOUT CHANNELS=09

BUS=CPU MODULE=03h TYPE=TSMARMCPU-AIN CHANNELS=08

BUS=CPU MODULE=04h TYPE=TSMARMCPU-AOQUT CHANNELS=02

BUS=CPU MODULE=06h TYPE=TSMARMCPU-EVTCNT CHANNELS=02

BUS=CPU MODULE=07h TYPE=TSMARMCPU-FREQ CHANNELS=08

BUS=TSM MODULE=00h TYPE=TSM-16A24P CHANNELS=16 WATCHDOG
BUS=TSM MODULE=02h TYPE=TSM-16E24 CHANNELS=16

BUS=TSM MODULE=03h TYPE=TSM-4INC CHANNELS=04 POWERFAIL
BUS=TSM MODULE=04h TYPE=TSM-4DA16 CHANNELS=04 POWERFAIL
BUS=TSM MODULE=05h TYPE=TSM-8AD8-KTY CHANNELS=08

BUS=TSM MODULE=07h TYPE=TSM-8AD12 CHANNELS=08

12 found.

From the output we learned that the digital inputs of the CPU have the module address 1.

The output module has the address 2. Lets try if we connected them correctly:

2+>xin cpu.l.0

0

2+>xout cpu.2.0 1
2+>xin cpu.l.0

1

Now we look for installed ExpresslO objects. On a naked system there are none, so:

2+>x1ist objects
0 found.

This is the expected behavior. Assuming we already loaded edge.shx into the system, we
can start the demo now:

52/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 Il. mCAT 2 Users Manual

2+>init 402000
% EDGE DEMO ***

Because we created a named ExpresslO object, xlist objects should display something

now.

2+>x1ist objects
EMERGENCYSTOP
1 found.

Even better, we can use the name of the object to access the input. Note that object names

are case sensitive.

2+>xin EMERGENCYSTOP
1
2+>xin emergencystop

FAIL

Well, we can switch the output now. Because we are looking for for edges only, our program

should react:

2+>xout cpu.2.0 O
2+>EMSTOP=0
2+>xout cpu.2.0 1
2+>EMSTOP=1

Great! To terminate the session, the reset command is the choice:

2+>reset

You may play with the example. Try IO_EVT_ONE instead of 10_EVT_BOTH, for example.

4. What to Read Next?

Now its time to study the kernel reference, where the concepts and functions of the kernel is
documented in detail. You may also have a look into the SYSMON or ExpresslO documenta-

tion.

© 2008 mocom software GmbH & Co KG 53/399

[ll. SYSMON — A System Monitor mCAT 2.20

lll. SYSMON - A System Monitor

1. Introduction

SYSMOM is a monitor program. It can be used to retrieve system information like task status
or interrupt status. It can also be used to download program images into systems RAM or
FLASH memory.

2. Line Setup and Terminal Features

SYSMON is available via serial RS232 communication. The line setup is 19200-8-N-1
(19200 Baud, 8 bits per character, no parity, one stop bit). Usually the serial line used is
marked “SEROQ” or “COM1”, depending on the naming convention of the hardware manufac-

turer. No hardware or software handshake is used.

SYSMON offers a very basic flow control when it comes to downloads. This feature is not
documented, but mocom's own wLGO Terminal program supports this flow control. If you
use a third party program (like HYERTERMINAL), you still can download SHX files. Use

ASCII transfers and set the so-called line-pacing to greater than 1ms and less than 10ms.

SYSMON uses the ASCII control characters BS (backspace, 0x08) for line editing only. No
cursor positioning codes are used. So line editing should work with almost all Terminal emu-

lations. Important: Disable auto-echo of your terminal program!

There are a few ASCII control characters supported by SYSMON for the users convenience.

ASCII Comment
ESC Clear input. The current line is cleared, cursor is set to position 0.
CTRL B Move cursor one position right, if possible.
CTRLF Move cursor one position left, if possible.
CTRLK Clear to end of line: Delete all characters right of the cursor. Cursor

position is not moved.

CTRL A Move cursor to begining of line (position 0).

CTRL E Move cursor to end of line (behind last character).

CTRL W Recalls the previous command line of the 4 line buffers available.

CTRL X Recalls the next command line of the 4 line buffers available.

CTRLD Delete character at the current cursor position.

CTRL H, Delete character in front of current cursor position (rubout).
BACKSPACE

54/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

ASCII Comment

CTRLV Toggle between override and insert mode. In insert mode, if a char-
acter is right of the cursor position, a newly entered character is in-
serted in front of this character. In override mode, if a character is
right of the current cursor position, a newly entered character over-
wrights this character.

Using wlgo.exe you have not to deal with those codes, because wigo maps the usual editing
keys (del,arrows,ESC) to those control characters.

3. Basic Syntax

3.1. SYSMON is Case Sensitive!

SYSMON syntax is case sensitive! All commands are expected to be entered in lower case.

3.2. Prompt
The Sysmon prompt is 2+>

The 2 signals mCAT Version of at least 2.00. The + signals support for a faster flow control
handling (used with wigo only).

3.3. Numbers
Type Prefix Example
hexadecimal a digit 67778, Offff, 6adcf (must start with digit, at least
with a 0!)
decimal # #10 #0 #-234
binary % %0101010101010101010

The default type is hexadecimal.

3.4. Strings

For some commands, the arguments have to be passed as strings. A string is enclosed by

paragraphs. Example “huhu”. A paragraph within a string must be prefixed with a backslash.

Exampel “This is the string \"huhu\"”.

© 2008 mocom software GmbH & Co KG 55/399

[ll. SYSMON — A System Monitor

4. Command Reference

4.1. SYSMON Help

help — online help

mCAT 2.20

Syntax: help {command}

Description: Display the help information. Without an argument, help gives a list of
commands available. If the name of a specific command is given as an
argument, detailed help on the specific command is shown.

Remarks:

Example:

2+>help

ps is msgids msgid

libs modules mods show

idle mem heap pools

info help reset dump

find fill move crc

eemove in out S30..

upload init go suspend

resume kill eeread eewrite

flashid id erase delpage

purge val blank rmsys

settime gettime xin xvin

xout xvout xinfo xcfg

xlist ipset ips format

dir del attrib create

+ _ *

Try help <command> for more information on specific commands.

all numbers are presumed to be in hex notation. Use a leading

'#' to indicate decimal notation. Use a leading '$%' to indicate
binary notation (01010101). Hex numbers must not start with a letter
(A-F, a-f). In such cases use a leading '0'.

2+>help fill

fill <from> <to> {byte|word|long} <value>
fill memory {byte|word]|long} from memory
location <from to <to> using <value>

2+>fill 402000 412000 long 044332211
2+>dump 411£cO

00411FCO 11 22 33 44 11 22 33 44 11 22 33 44 11 22 33 44 * _"3D."3D."3D."3D
00411FDO 11 22 33 44 11 22 33 44 11 22 33 44 11 22 33 44 * _"3D."3D."3D."3D
00411FEQ0 11 22 33 44 11 22 33 44 11 22 33 44 11 22 33 44 * ,"3D."3D."3D."3D
00411FF0 11 22 33 44 11 22 33 44 11 22 33 44 11 22 33 44 * _"3D."3D."3D."3D
56/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

00412000 FF FF EO D7 FF DF 08 36 BF FF 75 DE FF F7 20 A6 * 6..U0... .
00412010 FF FF 73 SOF FF FF 02 EA FF FF 42 85 DF FF BD DE * ..s....... B.....
00412020 0C 22 D3 56 41 83 51 DD 02 02 04 B4 54 02 80 32 * .".VA.Q..... T..2
00412030 02 00 08 46 00 90 22 E6 22 20 27 59 20 00 E4 B6 * ...F.."." 'Y

2+>

4.2. mCAT Base Commands

is — interrupt status
Syntax: is
Description: A list of all installed interrupt drivers in the system is displayed.

Int# = the interrupt number or id

drv name = name of the driver module serving this interrupt

ver = version of the module as stored in the IMD

ws = address of the Interrupts workspace

p = interrupt priority

t=if 1, its a PASS_MSG style interrupt driver, o if it is an old style driv-
er.

Int name = name of the interrupt source

Example
2+>1s
int# | drv name | ver | ws | p | t | int name
—————— R e s st B
0075 | mCAT/Ticker | 3.02 | 045EFCB8h | 1 | x |INT TIMER O
0077 | mCAT/BitbusDrv | 1.00 | O45EDEFCh | 1 | x |INT HDLC RX O
0081 | mCAT/ETHO | 1.00 | 045EB7F8h | 1 | x |INT ETH DMA RX
0082 | mCAT/ETHO | 1.00 | 045EB858h | 1 | x |INT ETH MAC TX
—————— e e T e e T e

© 2008 mocom software GmbH & Co KG 57/399

[ll. SYSMON — A System Monitor mCAT 2.20

ps — program status

Syntax:

Description:

Remarks:

Example ps:

Example ps -t

ps {-t}
A list of all running tasks in the system is displayed. If the option -t is

given, a list of all active threads is given instead.

The option -t is available on mCAT 2.20 ARM platforms only.

task | name | vers | prio | thread | gid | state
—————— B et
0000 | mcat/GBS | 3.50 | 128 | O005ED478h | 017 | WAITING

0011 | mCAT/HTTPD | 1.10 | 128 | 0057C9C8h | 021 | WAITING

0012 | mCAT/HTTPD | 1.10 | 128 | 005879BOh | 020 | WAITING

0013 | mCAT/IP | 1.00 | 120 | 005C582Ch | 019 | WAITING

0014 | mCAT/Sysmon | 1.70 | 002 | OO5EC634h | 018 | ACTIV

0015 | mCAT/XPSERVER | 1.01 | 254 | 005EF910h | 016 | WAITING
—————— B ittt e T T e

task = task number

name = name of the task as found in the IMD

vers = version of the task as found in the IMD

prio = current priority

thread = base address of the main thread's structure
qid = the tasks queue id

state = the state of the task (see ThreadGetState() function for de-
tails)

tid | task | prio | addr | sque | stack | inuse | pc | state
—————— R s St Rt
0016 | 015 | 254 | OO5EF910h | 000000 | 01024 | 00236 | 00BCOA20h | WAIT
0017 | 000 | 128 | OO5ED478h | 000000 | 01024 | 00252 | 00BCOA20h | WAIT
0018 | 014 | 001 | OO5EC634h | 000001 | 01024 | 00744 | 00BCOA20h | ACTIVE
0019 | 013 | 120 | 005C4FD8h | 000000 | 04096 | 00180 | OOBCOA20h | WAIT
0020 | 012 | 128 | 0058715Ch | 000000 | 08192 | 00180 | OOBCOA20h | WAIT
0021 | 011 | 128 | 0057C170h | 000000 | 08192 | 00180 | OOBCOA20h | WAIT
0022 | KRNL | 255 | 0055E068h | 000000 | 01024 | 00024 | OOBCOE78h | WAIT
—————— B Ea e e e
Tid = thread id

task = number of the task the thread belongs to
prio = priority of the thread

sque = signal queue

stack = allocated stack size for this thread

inuse = currently used stack size (this is not the minimum! Do not try to
set the stack size to this value!)

pc = the current program counter value. This value is equal for all
threads in the state WAIT

state = the state of the task (see ThreadGetState() function for de-
tails)

58/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

suspend — suspend a task

Syntax: suspend <taskno>
Description: Suspend task <taskno> (and all of its threads) from execution
Remarks:

resume — resume a task

Syntax: resume <taskno>
Description: Resume a previously suspended task <taskno> (and all of its threads).
Remarks:

kill - kill a task

Syntax: kill <taskno>
Description: Stop and remove a task (and its threads).
Remarks:

msgids — message ids
Syntax: msgids

Description: A list of all registered message ids in the system is displayed.

Type = the binary value used to identify a message, stored in the
member type of an mCAT message.

User = the task that serves messages of the given type

Pool = you can attach a message pool id to a MSGID data structure.
See also SYSMON command pools.

Name = the registered name of the message id.

Remarks: In earlier versions of sysmon this command was named “msgid”. The

old syntax is still available for your convenience.

Example:

2+>msgids
type | user | pool | name
——————————— Bt it e
00000BO2h | 000Bh | 0000h | VIEW.cmd

© 2008 mocom software GmbH & Co KG 59/399

[ll. SYSMON — A System Monitor mCAT 2.20

00000BO1h 000Bh 0000h mCAT/httpd/VIEW
00000C02h 000Ch 0000h SERVICE.cmd
00000C0O1h 000Ch 0000h mCAT/httpd/SERVICE
00000D04h 000Dh 0000h mCAT/IP/DNS
00000D03h 000Dh FFFDh mCAT/IP/SOCKET
00000D02n 000Dh 0000h mCAT/IP/IP
00000D01h 000Dh 0000h mCAT/IP/ARP
00005202h 0052h FFFEh mCAT/IPIF/SEND: :ethO
00005201h 0052h FFFEh mCAT/IPIF/CFG::eth0
00004601h 0046h 0000h mCAT/COM2 /Write
00004701h 0047h 0000h | mCAT/COM2/Read
00004401h 0044h 0000h | mCAT/COMl/Write

00000EO1h 000Eh 0000h mCAT/SYS/SERVICE/cmd
00000001n 0000h 0000h mCAT/GBS

00004D01h 004Dh FFFFh mCAT/Bitbus

00000F02h 000Fh 0000h mCAT/XPSERV/IoServer
00000F01h 000Fh 0000h mCAT/XPSERV/Subscribe
00004B02h 004Bh 0000h mCAT/Ticker

00004B0O1h 004Bh 0000h mCAT/Timer

00004501h	0045h
+ + +

60/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

libs — list shared libraries

Syntax: libs

Description: A list of all registered shared libraries in the system is displayed.
Remarks:

2+>1ibs

libid | name | ver

_______ o
0000h | mCAT/Kernel | 3.00
0001lh | mCAT/MemMgr | 3.01
0002h | mCAT/NameServer | 2.00
0003h | mCAT/NvMemMgr | 1.10
0005h | mCAT/GBSAPI | 1.10
0008h | mCAT/IP/socket | 3.00
0009h | mCAT/ExpressIO | 2.10
000Ah | mCAT/Ticker | 3.02
000Bh | mCAT/FlashMaint | 2.00
000Ch | mCAT/XPIO/Server | 1.10
0010h | mCAT/SimpleIO | 1.30
00l6h | mCAT/BGMAPI | 1.02
0018h | mCAT/HTTPDLib | 1.00

_______ e

modules - list of all modules in FLASH memory
Syntax: modules {-m}

Description: A list of all start-able modules (tasks, interrupt drivers, shared libraries,
..) stored in the systems FLASH memory is displayed. If the option -m
is used, the used and reserved memory space for those modules are
displayed, separated for ROM (=FLASH) and RAM. If a module does
not support the new style IMD introduced with the mCAT Version 2.20
development environment, no memory layout data is displayed. In the
example following, the module “mCAT/TSM/BOOT” does so.

Remarks: In earlier versions of sysmon this command was named “mods”. The

old syntax is still available for your convenience.

Example:

2+>modules -m

© 2008 mocom software GmbH & Co KG 61/399

[ll. SYSMON — A System Monitor mCAT 2.20

name | ver | rom.base | rom.len | ram.base | ram.len
—————————————————— e it e e e et
mCAT/TdleTask | 1.00 | 00BCOO0OOh | 00008B30h | 007F0000h | 00007EBCh
mCAT/Kernel | 3.00 | 00BCOOOOh | 00008B30h | 007F0000h | 00007EBCh
mCAT /NvMemMgr | 1.10 | 00BC8B38h | 00001200h | 007F7ECOh | 00000018h
mCAT/MemMgr | 3.01 | 00BC9D40h | 0000OEE8h | 007F7EEOh | 000004A8h
mCAT/NameServer | 2.00 | 00BCAC30h | 00000A50h | 007F8390h | 00000000h
mCAT/Ticker | 3.02 | 00BCB688h | 00000D90h | 007F8398h | 00000010h
mCAT/ExpressIO | 2.10 | 00BCC420h | 000016BCh | 007F83BOh | 00000010h
mCAT/XPIO/Server | 1.10 | OOBCDAEOh | 000024FOh | 007F83C8h | 00000020h
mCAT/XPSERVER | 1.01 | OOBCDAEOh | 000024FOh | 007F83C8h | 00000020h
mCAT/FlashMaint | 2.00 | OOBCFFD8h | 00000B94h | 007F83FOh | 00000000h
mCAT/BitbusDrv | 1.00 | 00BDOB70h | 000026B8h | 007F83F8h | 00000048h
mcat /GBS | 3.60 | 00BD3230h | 0000548Ch | 007F8448h | 000000C8h
mCAT/GBSAPI | 1.10 | 00BD3230h | 0000548Ch | 007F8448h | 000000C8h
mCAT/TSM/ARMCPU | 1.02 | 00BD86COh | 00001CACh | 007F8518h | 00000048h
mCAT/TSM/DINOUT | 2.01 | OOBDA370h | 000006COh | 007F8568h | 00000000h
mCAT/TSM/2dal2 | 1.11 | OOBDAA38h | 00000784h | 007F8570h | 00000048h
mCAT/TSM/4DA16 | 1.01 | OOBDBICOh | 00000860h | 007F85COh | 00000048h
mCAT/TSM/8ad12 | 2.00 | OOBDBA28h | 00000D40h | 007F8610h | 00000048h
mCAT/TSM/8ad8 | 1.00 | 00BDC770h | 00000CCOh | 007F8660h | 00000048h
mCAT/TSM/1inc | 1.00 | 00BDD438h | 0000037Ch | 007F86BOh | 00000000h
mCAT/TSM/4INC | 1.00 | 00BDD7B8h | 00000680h | 007F86B8h | 00000000h
mCAT/SWBUS/float | 1.00 | OOBDDE40Oh | 00000784h | 007F86COh | 00000000h
mCAT/SWBUS/int | 1.00 | OOBDE5C8h | 00000788h | 007F86C8h | 00000000h
mCAT/Sysmon | 1.70 | 0OBDED58h | 0000DE70h | 007F86DOh | 00000DOCh
mCAT/httpdfs | 1.00 | 00000000h | 00000000h | 00000000h | 00000000h
mCAT/SerDrv | 2.03 | 00B48000h | 0000487Eh | 00401A00h | 00000000h
mCAT/SimpleTO | 2.02 | 00B58000h | 00002756h | 00401BOOh | 00000000h
mCAT/BGMServer | 1.04 | 00B80000h | 000078A4h | 00400000h | 00000244h
mCAT/BGMAPT | 1.02 | 00B878A8h | 00000DF8h | 00400248h | 00000000h
mCAT/ETHO | 1.00 | 00B886A8h | 00001B20h | 00400250h | 00000008h
mCAT/IP | 1.00 | 0OB8AIDOh | 00007F48h | 00400260h | 00000A78h
mCAT/IP/socket | 3.00 | OOB8ALDOh | 00007F48h | 00400260h | 00000A78h
mCAT/HTTPD | 1.20 | 00B92120h | 0000F6A4h | 00400CEOh | 000004ACh
mCAT/HTTPDLib | 1.00 | 00B92120h | 0000F6A4h | 00400CEOh | 000004ACh
mCAT/TSM/BOOT | 1.00 | —=====——- | === | === | ===
—————————————————— R Rt e
show - display the bootlog

Syntax: show

Description: While mCAT starts up all information printed using the

TraceWriteLog() kernel function is stored in a ring buffer — called the
bootlog. Using the command show you can display this log. If the sys-
tem has many modules installed and/or uses TraceWriteLog frequent-
ly, the bootlog may not hold a complete boot protocol.

Example:

mCAT V2.20-R00168 TSMARMCPU [SAMSUNG S3C4530 ARM7TDMI]

62/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

lll. SYSMON — A System Monitor

(c) 1997-2004 mocom software Gmbh & Co KG
email: support@msac.de

mCAT/IdleTask 1.00
mCAT/Kernel 3.00
mCAT/NvMemMgr 1.10
mCAT/MemMgr 3.01
2048 kByte RAM found
256 kByte HEAP installed
mCAT/SimpleIO 1.30
mCAT/NameServer 2.00
mCAT/Ticker 3.02
mCAT/ExpressIO 2.10
mCAT/XPSERVER 1.01
mCAT/FlashMaint 2.00
mCAT/BitbusDrv 1.00
NODE=2 SPEED=1.5 MBit/s BUFFERS=8 MSGLEN=255
mcat/GBS 3.50
mCAT/GBSAPI 1.10
mCAT/TSM/ARMCPU 1.01
mCAT/TSM/DINOUT 2.01
mCAT/TSM/4DAl6 1.01
mCAT/TSM/8adl2 2.00
mCAT/TSM/8ad8 1.00
mCAT/SWBUS/float 1.00
mCAT/SWBUS/int 1.00
mCAT/Sysmon 1.70
mCAT/httpdfs 1.00
mCAT/BGMServer 1.04
BGM: NO NVRAM AREA FOUND, BGM NOT INSTALLED
mCAT/BGMAPI 1.02
mCAT/ETHO 1.00
ETH MAC: 00.06.EA.00.00.0C
ETH 100-BASE-TX, HALF DUPLEX
ETH MTU=1500, BUFFERS=100
INTERFACE IP = 172.031.031.053 [ACLF1F35]
GATEWAY ADDR = 172.031.031.253 [ACL1F1FFD]
mCAT/IP 1.00
USING DOMAIN NAMESERVER AT 172.031.031.254 [ACL1F1FFE]
mCAT/IP/socket 3.00
mCAT/HTTPD 1.10
mCAT/HTTPDLib 1.00
mCAT/TSM/BOOT 1.00
SYSTEM STARTED

Kk SYSMON 1.70 *

2+>

© 2008 mocom software GmbH & Co KG

63/399

[ll. SYSMON — A System Monitor mCAT 2.20

mem — display the memory utilization

Syntax: mem

Description: Display the size and utilization of installed RAM, the system heap and
the so-called NVRAM section (used by BGMEM to store data non-
volatile).

Remarks:

heap — display the heap utilization
Syntax: Heap {module name}

Description: Display base address, length of memory block and owner (imd name)
of all allocated blocks of memory. If module name is given, only
blocks allocated for the given module name are shown.

Example: 2+>heap mcat/gbs

| base | size | module

——————— BT T T
00001 | 005ec8lch | 00000048 | mcat/GBS

00002 | 005ec84ch | 00000076 | mcat/GBS

00003 | 005ec898h | 00002056 | mcat/GBS

00004 | 005ed0alOh | 00000164 | mcat/GBS

00005 | 005edl44h | 00000076 | mcat/GBS

00006 | 005ed190h | 00000032 | mcat/GBS
——————— B e Tt TR

64/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

lll. SYSMON — A System Monitor

pools — display the buffer pool utilization

Syntax:

Description:

Remarks:

Example:

2+>pool
pool |

+
|
|

002d |
|

+

S

005ED598h
005C50D0h
005B7CF4h
005874F4h

pools

Display the size and utilization of installed buffer pools. The informa-
tion includes number of buffers in a pool, number of free buffers in a
pool and the size of a single buffer.

Start and end mark the memory region from where the buffers of a giv-
en pool are allocated. Len gives the length of the buffers in a specific
pool. Buffers tells the number of buffers a pool was designed to hold.
Free tells how many buffers are still available. Owner tells the thread id
or interrupt id of the creator of that pool.

Pools is a powerful help when it come to debugging. If a applictaion or
driver consume more buffers than available or constantly holds more
buffers than expected, something is pretty wrong.

This command is available on mCAT 2.20 ARM platforms only.

Please note that some drivers initially allocates a set of buffers for in-
ternal optimization. This is NOT A BUG!

| end | len | buffers | free | owner
e o B tom———— tom————
| OOS5EDEB8h | 00292 | 00008 | 00007 | 077

| OO5EAF10h | 01552 | 00100 | 00060 | 081

| O05BFOF4h | 00116 | 00256 | 00256 | 013

| 005B7CF4h | 01552 | 00128 | 00128 | 013

Fom Fo—— fom— - Fo—— Fo——

info — display system information

Syntax:

Description:

Remarks:

info

Display the hardware serial number, the build date and version of the
mCAT kernel and some other information of interest (including BIT-
BUS and ETHERNET settings).

In earlier versions of SYSMON this command was named “serno”. The

old syntax is still available for your convenience.

© 2008 mocom software GmbH & Co KG 65/399

[ll. SYSMON — A System Monitor mCAT 2.20

reset — issue a system reset
Syntax: reset

Description: This command disables all interrupts and stops the servicing of the
hardware watchdog. As a result, a hardware reset will be issued.

Remarks:

4.3. Memory and I/0 Manipulation Commands

dump - display memory
Syntax: dump {addr}

Description: Display 128 bytes of memory starting with {addr} in hexadecimal for-
mat. A ASCII representation of the bytes is also shown where applica-
ble .

Remarks:

find — find in memory
Syntax: find <startaddr> <endaddr> {!} <byte> <string> ...

Description: Find a sequence of bytes / string in memory. The search will start at
<startaddr> and end at <endaddr>. A single exclamation mark (!) after

<endaddr> forces a non-case-sensitive comparison.

Remarks:

fill - fill memory
Syntax: fill <startaddr> <endaddr> {byte|word|long} <value>

Description: Fill memory from <startaddr> to <endaddr> with<value>. By default,
value is assumed to be a byte value. Use the modifiers byte, word or

long to specify the width of value.

Remarks:

66/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

move — move memory
Syntax: move <from> <to> <length>

Description: Move a chunk of memory from address <from> to address <to>. The
length of the chunk is <length>.

Remarks:

blank — blank check memory
Syntax: blank <from> <to>

Description: Checks whether the given memory area is blank (all OxFF). Operation

starts at address <from> and ends at address <to>.

Remarks:

crc — calculate the CRC32 code for a memory region
Syntax: crc <from> <to>

Description: Calculate the CRC32 cyclic redundancy check code for the memory

area from address <from> to address <to>.

Remarks: This function can be helpful to detect changes in regions where no

changes are expected.

© 2008 mocom software GmbH & Co KG 67/399

[ll. SYSMON — A System Monitor mCAT 2.20

in — read a byte, word or long word from the i/o space

Syntax:

Description:

Remarks:

in {byte|word|long} <addr>

Read a byte, word or long word from the i/o space. The value is dis-
played in hexadecimal, decimal and binary notation. If no width modifi-

er is given, a byte is read.

On the Toshiba TLCS900 and ARM implementations of mCAT i/o is
memory mapped. This implies that you can use in to read values in
memory as well. This feature may not be guaranteed on future plat-

forms as they may have separate i/o spaces.

On ARM platforms you can cause an unaligned access exception (sys-
tem will reset!) if you specify word or long word access and your ad-

dress is not properly aligned. Example: in long 1

out — write a byte, word or long word into the i/o space

Syntax:

Description:

Remarks:

out {byte|word|long} <addr> <value>

Write a byte, word or long word into the i/o space. No output other
than a new line is made. If no width modifier is given, a byte is written.

On the Toshiba TLCS900 and ARM implementations of mCAT i/o is
memory mapped. This implies that you can use out to write a values to
memory as well. This feature may not be guaranteed on future plat-
forms as they may have separate i/o spaces.

On ARM platforms you can cause an unaligned access exception (sys-
tem will reset!) if you specify word or long word access and your ad-

dress is not properly aligned. Example: out word 1 Oaaff

68/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor
4.4. Flash Memory Manipulation Functions

flashid — read the device id from flash memory
Syntax: flashid <addr>

Description: Returns type of the installed Flash at address <addr>. If no <addr> is

given, a list of supported Flash types is displayed.

Remarks: In earlier versions of sysmon this command was named “id”. The old

syntax is still available for your convenience.

erase — erase flash memory
Syntax: erase <addr>

Description: Erase a sector of a FLASH-Memory starting at <addr>. This command
immediately starts to physically erase the flash sector addressed by
<addr>.

Remarks: If any type of program is still running from within such a page, the sys-
tem WILL CRASH! This calls disables all interrupts until the operation
is complete. This can take a few seconds and may harm the system
functionality. To prevent those pitfalls use the command delpage in-
stead.

© 2008 mocom software GmbH & Co KG 69/399

[ll. SYSMON — A System Monitor mCAT 2.20

delpage — mark flash pages for deletion

Syntax:

Description:

Remarks:

delpage <pageno> {<pageno>...<pageno>}

Erase flash using flash maintainer 'FERA'. A list of up to 16 ordinal
page numbers is used to mark individual pages for deletion. The actual
deletion process is started after system reset when no interrupts are

active. This prevents the pitfalls of the erase command.
Example:
delpage 0 1 2 #12

Erase pages 0, 1, 2 and 12 after next system reset.

The base addresses of the pages and their associated page numbers
are hardware depended and are documented in the mCAT release

documentation!

purge — invalidate a module

Syntax:

Description:

Remarks:

purge <addr>

Invalidate an IMD (AA55 => 0055) at <addr>. This command is useful
to deactivate a module in FLASH memory. Every mCAT module starts
with an IMD. The first entry in the IMD is the pattern Oxaa55. If this pat-
tern has another value, the module is not detected and as a conse-
quence not installed.

70/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

val — validate a module
Syntax: val <addr>

Description: Validate an IMD (FF55 => AA55) at <addr>. This command is useful to
activate a module in FLASH memory. Every mCAT module starts with
an IMD. The first entry in the IMD is the pattern Oxaa55. If this pattern
was set to 0xff55 instead at compile time, the module is not detected
and as a consequence not installed. However, you can still use the
SYSMON command init to start such a module. After use of val the
pattern will be changed and the module will be detected with the next
reboot.

Remarks: The commands val and purge are useful when you move a module
from RAM to FLASH. It is a good practice to set the IMD to 0xff55be-
fore you move to FLASH. Then you can use init to further test the
modules behavior in the FLASH environment. When you are sure its
working even in FLASH, use val to validate it and reboot the system.
The module will then be started automatically by the system.

4.5. EEPROM Manipulation Functions

eeread — read eeprom

Syntax: eeread <addr>
Description: Read one 16-Bit word from the serial EEPROM.
Remarks:

eewrite — write eeprom

Syntax: eewrite <addr> <value>
Description: Write one 16-Bit word into the serial EEPROM.
Remarks:

© 2008 mocom software GmbH & Co KG 71/399

[ll. SYSMON — A System Monitor mCAT 2.20

eemove — move in eeprom memory
Syntax: eemove <from> <to> <length>

Description: Move a chunk of memory in the serial eeprom from address <from> to
address <to>. The length of the chunk is <length>. Please note that all

addresses are 16-Bit values.

Remarks:

4.6. Program Upload / Download and Start

S3.. — store a S3/S7 format hex record in memory
Syntax: A valid S3/S7 record

Description: Every valid S3 format record send to SYSMON is accepted. The data
portion of the record is written to the memory using the embedded ad-
dress. SYSMON detects whether the target memory is RAM or FLASH
and it will invoke the FLASH programming functions as needed.

Remarks:

upload — memory upload
Syntax: upload <from> <to> {<recsize>}

Description: Send the memory region from address <from> to address <to> to the
the display using S3/S7 hex file format. If you activate logging with wi-

go.exe, you can retrieve the S3/S/ data from the lodfile later.

Remarks: The record size is 64-bytes per record per default. You can modify the
record size using the optional argument <recsize>.

721399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

lll. SYSMON — A System Monitor

rmsys — remove system

Syntax:

Description:

Remarks:

init — init module
Syntax:

Description:

Remarks:

go — call function
Syntax:

Description:

Remarks:

rmsys

If you have to replace the current mCAT by another version, use rm-
sys invalidate the mCAT core module, to mark all flash pages that
need to be deleted and to issue a reset. After the reset, the so-called
BOOTMON software (looks pretty like std. MCAT) will allow you to
download a new mCAT S3/S7 image.

Useful for system updates.

init <addr>

'init" a module (e.g. create a task) by executing its Tasklnit() function.
Useful to start modules in RAM or disabled modules (see command
purge) in FLASH memory.

go <addr>

Execute code at <addr>. The code is executed in the task space of
SYSMON so you can easily hang up SYSMON! Be careful!

Used for very special situations only!

4.7. Optional Commands

4.7.1. ExpresslO Specific Commands

SYSMON supports a minimum set of commands to explore and test ExpressIO. It allows

both, access to physical drivers via bus.module.channel and access to named IOOBE-

JCTS.

© 2008 mocom software GmbH & Co KG 731399

[ll. SYSMON — A System Monitor

xlist — list Expresslo properties

mCAT 2.20

Syntax: Xlist modules|xp|objects|busses

Description: Xlist can be used to explore the installed Expresslo. Using the sub-op-
tions, it is easy to verify the installed hardware and the available Ex-
pressPrograms.
modules = list all hardware modules installed
xp = list all ExpressPrograms available
objects = list all named ExpressObijects in the system
busses = list physically available buses

Remarks:

Example output:

2+>xlist xp

CAPTURE
CAPTURE

VECCOUNTER

PULSE
EDGE
COUNTER

6 found.

2+>x1list xp busses
CPU SLOTS=8 MODULES INSTALLED=6
TSM SLOTS=16 MODULES INSTALLED=6
SEFT SLOTS=64 MODULES INSTALLED=0

3 found.

24>

x1list modules

BUS=CPU
BUS=CPU
BUS=CPU
BUS=CPU
BUS=CPU
BUS=CPU
BUS=TSM
BUS=TSM
BUS=TSM
BUS=TSM
BUS=TSM
BUS=TSM

MODULE=01h
MODULE=02h
MODULE=03h
MODULE=04h
MODULE=06h
MODULE=07h
MODULE=00h
MODULE=02h
MODULE=03h
MODULE=04h
MODULE=05h
MODULE=07h

12 found.

TYPE=TSMARMCPU-DIN
TYPE=TSMARMCPU-DOUT
TYPE=TSMARMCPU-AIN
TYPE=TSMARMCPU-AOUT
TYPE=TSMARMCPU-EVTCNT
TYPE=TSMARMCPU-FREQ
TYPE=TSM-16A24P
TYPE=TSM-16E24
TYPE=TSM-4INC
TYPE=TSM-4DA16
TYPE=TSM-8AD8-KTY
TYPE=TSM-8AD12

CHANNELS=08 POWERFAIL
CHANNELS=09
CHANNELS=08
CHANNELS=02
CHANNELS=02
CHANNELS=08
CHANNELS=16
CHANNELS=16
CHANNELS=04 POWERFAIL
CHANNELS=04 POWERFAIL
CHANNELS=08

CHANNELS=08

WATCHDOG

74/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

xin — read a single channel
Syntax: xin <bus>.<module>.<channel> | <ioobject>

Description: Read and display the value of a single channel. The channel can be
addressed using the bus.module.channel enumeration scheme or via
existing ExpressObijects.

Remarks:

Example 1 (cpu.1.1 is a digital input):

2+> xin cpu.l.1
0
2+>

Example 2 (cpu.3.1 is an analog input):

2+> xin cpu.3.1
000003FSh [1017]
2+>

Example 3 (a named IOOBJECT, a digital input)

2+> xin belt moves
0
2+>

xout — write to a single channel
Syntax: xout <bus>.<module>.<channel> | <ioobject> <value>

Description: Write the value <value> to a specific channel. The channel can be ad-
dressed using the bus.module.channel enumeration scheme or via ex-
isting ExpressObijects.

Remarks:

Example output:

2+> xout cpu.2.8 1
24>

© 2008 mocom software GmbH & Co KG 751399

[ll. SYSMON — A System Monitor

xvin — read all channels of a module

Syntax:

Description:

Remarks:

xin <bus>.<module> | <ioobject>

mCAT 2.20

Read all channels of a module. The module can be addressed using

the bus.module.channel enumeration scheme or via existing Expres-

sObjects.

Example 1 (digital i/0):

2+> xvin cpu.?2
0000.0000.0

2+>

Example 2 (analog i/0):

2+>xvin cpu.2 3

00000432h
00000437h
0000045Ah
00000469h
0000045Ah
0000045%h
00000468h
00000001h
2+>

[1074]
[1079]
[1114]
[1129]
[1114]
[1113]
[1128]
[1]

xvout — write to all channels of a module

Syntax:

Description:

Remarks:

Example:

2+> xvout cpu.2 1

2+>

xvout <bus>.<module> | <ioobject> <val0> <val1> .. <valN>

Write a list of values (<val0> <val1> .. <valN>) to the channels of a

module. The values will be assigned to the outputs as they appear in

10011001

the list (<val0> == channel 0, <val1> == channel 1 ...).

76/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20

lll. SYSMON — A System Monitor

xinfo — read a configuration item

Syntax:

Description:

Remarks:

Example output:

2+> xinfo cpu.
TSMARMCPU-DIN
2+> xinfo cpu.
TSMARMCPU-DIN
2+>

1.

0

xinfo <bus>.<module>{.<channel>} | <ioobject> <item>

Read a configuration item. The item identifier <item> must be a nu-
meric constant. If a module specific item shall be read, the argument
<channel> is optional.

See also 4.7.1.1. Constant Values Used for xinfo & xcfg Commands

2

xcfg — write a configuration item

Syntax:

Description:

Remarks:

xcfg <bus>.<module>.<channel> | <ioobject> <item> <value>

Write a configuration item. The item identifier <item> and the value
<value> must be numeric constants. If a module specific item shall be

read, the argument <channel> is optional.

See also 4.7.1.1. Constant Values Used for xinfo & xcfg Commands

Example output (set analog input channel range to 0-5V):

2+> xcfg cpu.3.1 #10 012

4.7.1.1. Constant Values Used for xinfo & xcfg Commands

This section lists all constant values needed for the xcfg & xinfo commands in SYSMON

compatible form. For details on items, the use and meaning of the cfg/info calls and those

constants, please refer to the ExpresslO documentation.

// XCFG items

CFG_SET ENABLE

CFG_SET_ CHANNEL_ RANGE #10

CFG_SET CONV_SPEED

CFG_SET GAIN

#11
#12
#13

CFG_SET ATTENTUATE
CFG_SET OFFSET
CFG_SET LINTAB
CFG_SET PWM_FREQ
CFG_SET_INC_ MODE

#14
#15
#16
#20

© 2008 mocom software GmbH & Co KG

771399

[ll. SYSMON — A System Monitor

mCAT 2.20

CFG_SET DIR
CFG_SSI_SET TURNS
CFG_SSI_SET STEPS
CFG_SET CHANNELS
XP_CFG_SET SAMPLE RATE
XP_CFG_SET LOWTIME
XP_CFG_SET HIGHTIME
XP_CFG_SET TRIGGERMODE
XP_CFG_SET INVERSION

// XINFO items
INFO GET_ IDENT

INFO GET IDENT STRING
INFO GET VECTOR SIZE
INFO GET_ PORT CLASS
INFO_GET POWERFAIL

INFO GET_ WATCHDOG

INFO GET CHANNEL RANGE
INFO_GET_ START MODE
INFO GET GAIN

INFO GET ATTENTUATE
INFO GET OFFSET
INFO GET LINTAB
INFO_GET ADDRESS

INFO GET_ INC MODE

INFO GET INDEX STATUS
INFO_GET CHANNELS
XP_INFO GET IDENT STRING
XP_INFO GET SAMPLE RATE
XP_INFO GET MAX SAMPLE RATE
XP_INFO GET LOWTIME
XP_INFO GET HIGHTIME
XP_INFO GET TRIGGERMODE
XP_INFO GET INVERSION
// I/0 CLASS INFO

CLASS DIGITAL

CLASS ANALOG

CLASS_PWM

CLASS_FREQ

CLASS EVTCNT

CLASS_POS

CLASS INTEGER

CLASS FLOAT

CLASS_INPUT
CLASS_OUTPUT

CLASS_RMW

RANGE_RAW
RANGE_RAW U 10000
RANGE_RAW U 5000
RANGE_RAW S 10000
RANGE RAW S 5000
RANGE_U 10000

RANGE U 5000

#21
#22
#23
#30
08001
08002
08003
08004
08005

0 J o U w N

e

#10
#11
#12
#13
#14
#15
#30
08000
08001
08002
08004
08005
08006
08007

00001
00002
00004
00008
00010
00020
00040
00080
08000
00000
04000

// AD/DA CONFIGURATION VALUES

001
002
003
004
005
011
012

78/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

RANGE S 10000 014
RANGE S 5000 015
RANGE_UB 01f
RANGE_020mA 020
RANGE_420mA 021
RANGE_PT100V4 031
RANGE KTY 032
RANGE KTY10 032
RANGE KTY81 032
RANGE LM34 034
RANGE THERMO K 041
RANGE _THERMO J 042
// TSM4SSI ONLY

SSI_START 0 01
SSI_START 1 02
SSI_START 2 04
SSI_START 3 08
SSI_START ALL 0Of
// COUNTER MODE FOR TSM4INC
INC_MODE QUADRATURE X1 1
INC_MODE QUADRATURE X2 2
INC_MODE QUADRATURE X4 3
// MODE FOR PULSE EXPRESSPROGRAM
TRG_SINGLE 1
TRG_RETRIGGER 2
TRG_QUEUED 3
INVERT OFF 0
INVERT ON 1

4.7.2. Realtime Clock Specific Commands

settime — set system RTC
Syntax: settime #hh #mm #ss #dd #mm #yyyy

Description: Set the real-time clock. Be sure to use the '# to signal SYSMON deci-

mal input! Example:
settime #16 #30 #23 #24 #02 #2003
will set the RTC to:

24.02.2003 16:30:23

Remarks: Time must be in UTC!!

© 2008 mocom software GmbH & Co KG 79/399

[ll. SYSMON — A System Monitor mCAT 2.20

gettime — display system time (RTC)

Syntax: gettime
Description: Print out current time [UTC]
Remarks: Time must be in UTC!!

4.7.3. BGMEM Specific Commands

4.7.3.1. format {size}

Formats BgMem - deletes all files. If a size is specified and if this differs from EEPROM word
15 then this new size is written to EEPROM and a RESET is executed to make the new

memory layout active. All data in the BgMem memory is lost.

4.7.3.2. dir

Shows a list of available files

2+>dir
---F EventFifo.log 00128 / 00040
CREATED TUE 2001-7-10 8:3:59
LAST MODIFIED TUE 2001-7-10 8:3:59
00001 good files found

The first letters represent the file attributes. The first two are reserved for extensions, the 3rd

is “R” for Read only or “-* for R/W. The last attribute is the file type “-* for random file, “F” for
FIFO, “L” for LIFO and “R” for ring buffer.

The file name, the number of records and their size follow.

4.7.3.3. attrib <filename> <+r|-r>

The first argument is the file name, the second a switch. “+r” activates read only.

4.7.3.4. del <filename>

Deletes a file.

4.7.3.5. create <filename><#records><#size><fifo|lifo|ring|random>

Creates a file <filename> with <#records> of <#size>each. The structure of the file is “fifo” or

“lifo” or “ring” or “random”.

80/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

A size of 0 selects a file of maximum size (BGM_MODE_FIT)

4.7.4. SOCKET / Ethernet Specific Commands

4.7.4.1. IP-Information at a Glance: info and ips

The mCAT system monitor SYSMON offer a command called info. It takes no arguments
and displays some system configuration values — including the IP configuartion. Simply issue
info at the command line and you will get an output like:

mCAT Version 2.20-D00166 Build 401FC857
(c) 1997-2004 mocom software Gmbh & Co KG
email: support@msac.de

SERNO=DAV092
SYSSTART=00BC0000 HARD=0012 CORE=1101

BITBUS NODE=2 SPEED=1.5 MBit/s BUFFERS=8 MSGLEN=255
RADIO MODE = OFF

ETHERNET O:
MAC=0006 EA00 000C

AUTONEGOCIATE

IP ADDR = 172.031.031.053
SUBNETMASK = —-—-—-.-——.-———.-——
GATEWAY = 172.031.031.253
DNS = 172.031.031.254
MTU = 1500

MAX SOCKETS = 64

-——.---.-—--.-—-- means “not set”

4.7.4.2. Setup IP-Addresses: setip

The jpset command can be used to setup the IP configuration of a system. At the command
line the command expects an item selector and an address as an argument.

Please note that the address MUST be enclosed in quotes.

Please also note that the IP address is the only value that MUST be set to operate a mCAT
node in a simple intranet.

ipset IP "xxx.xxX.xxXX.xXxxX" set the IP address

ipset NM "xxx.xxxX.xxxX.xxx" set the NETMASK if other than default
ipset GW "xxx.xxx.xxXX.xXxXx" set the GATEWAY address (optional)
ipset DN "xxx.xxx.xxx.xxx" set the DOMAIN NAME SERVER address

© 2008 mocom software GmbH & Co KG 81/399

[ll. SYSMON — A System Monitor mCAT 2.20

Example:
ipset ip “172.31.31.54”

Setting a GATEWAY address allows the node to communicate with hosts in other networks
(e.g. The Internet). To prevent this set GATEWAY to “255.255.255.255” (will be displayed as
“not set”). To prevent that a host from another network (e.g. the internet) connects itself to
your local nodes, set GATEWAY to “0.0.0.0”. In that case, the mCAT TCP/UDP/IP protocol

stack accepts only traffic from and to hosts attached to the same network (controlled by the
network mask).

If you do not need a GATEWAY, it is recommended to set gateway to “0.0.0.0”.

4.7.4.3. List IP-Status: ips

This command lists all allocated sockets. Note that TCP server side anonymous sockets

used to maintain connections have an rport (remote port) and an rip (remote ip address)
ONLY!

| prt | port | rport | rip | 1lis | acid | endpoint
————— Bt e it
001 | TCP | 8000 | 0 | 000.000.000.000 | 001 | 0 | mCAT/httpd/SERVICE
002 | TCP | 80 | 0 | 000.000.000.000 | 004 | 0 | mCAT/httpd/VIEW
————— R et e Rt

4.7.4.4. Set/Display Ethernet Mode

(New with R00409 and later)

This command can be used to set the Ethernet mode. The standard mode is AUTONEGO-
CIATE. On some systems the standard is AUTONEGOCIATE10 (limiting the negotiation to
the 10MBit modes) to limit the power dissipation.

ethmode {<infno>} "<mode>"
set/display phymode of ethernet interface <infno>.

If <infno> is not given, std. interface 0 is used.
<mode> can be of:

auto,autul0,autol00, fulll00, fulll0,halfl100,halfl0,isolate

The command displays the current preset mode (the one that is stored in eeprom and that is
and will be valid after startup) and the current state of the physical interface (PHY). If you
use ethmode, you change the preset mode only.

2+>ethmode

82/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 lll. SYSMON — A System Monitor

PRESET MODE : AUTONEGOTIATION
CURRENT STATE: 100-BASE-TX, HALF DUPLEX
2+>ethmode "100full"

PRESET MODE : 100-BASE-TX, FULL DUPLEX
CURRENT STATE: 100-BASE-TX, HALF DUPLEX
2+>reset

2+>ethmode

PRESET MODE : 100-BASE-TX, FULL DUPLEX

CURRENT STATE: 100-BASE-TX, FULL DUPLEX

4.7.4.5. Set the TELNETD Password
(New with R0O0409 and later)

Using the command passwd you a new password for the telnet connection can be set.
Please note that only one TELNET connection can be opened to SYSMON at a time. The
telnet connection disables the serial connection to Sysmon as well.

Do not try to download SHX-Files via telnet, because this protocol is not prepared to handle

the necessary handshake.

2+>help passwd

passwd "<oldpasswd>" "<newpasswd>"
change telnetd password. If no password is used up to now, a
emtpy string "" must be used.

© 2008 mocom software GmbH & Co KG 83/399

IV. mCAT Kernel Reference mCAT 2.20

IV. mCAT Kernel Reference

1. The mCAT Kernel Technical Reference

The mCAT-Kernel is designed to control and manage the resources of the central process-
ing unit (CPU). The main resource of the CPU is the processing time — and that is the focus
of the kernel functions. Other important resources, like memory resources, are managed in
separate modules — and this is again another important feature of the basic mCAT concept:
A functionality can be implemented in separated modules. To achieve the modularity needed
therefore, mCAT offers different kinds of modules:

1. Tasks / Threads

2. Interrupt-Drivers

3. Shared Libraries

4. Inits

The functions needed to manage and to interconnect these modules are incorporated in the
mCAT-Kernel. The glue needed to interconnect all modules is the message passing.

1.1. Typographic Conventions

A few conventions should help us to keep the overview ...

A word or phrase of importance is set in italic style.

A Constant defined in a header file included is set in this style.

1.2. A note on Datatypes

With mCAT 2.10-R00168 we have changed a few data types and names of data types for
better compatibility. However, the old mCAT 2.10 data types are still available and fully valid.

Please take the following table as a reference for the different types:

84/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference
MCAT 2.10 MCAT 2.10- minimum maximum use
and earlier R00168
byte UINT8 0 255
word UINT16 0 65535
lword UINT32 0 4294967295
- UINT64 0 264-1 Not available with TLCS900
- INT8 -128 127
short INT16 -32768 32767
long INT32 -2147483648 2147483647
- INT64 -2¢3 2631 Not available with TLCS900
int’ INTEGER’ -32768" 32767 Default type for small inte-
gers
unsigned’ UNSIGNED’ 0 65535 Default type for unsigned in-
tegers
bool BOOL TRUE FALSE

" The range of those types depend on the target platform. We assume that for those types

the 16-Bit data range is the minimum we can rely on.

2. mCAT Tasks

2.1. The Concept of Tasks

This section describes task related functions. A task is the smallest globally addressable pro-
gram unit within mCAT. A task consists of at least one thread (separately executable pro-
gram inside a task). You don't have to worry about threads if your tasks contain just one pro-

gram.

2.2. Relation with other mCAT Concepts

As we heard before, a task includes one or more threads. It can call functions implemented
in a shared library and send / receive messages to/from other tasks or interrupt drivers.

2.3. Task Related Data Structures

Every Task needs one global variable of type INTEGER called Self. Self is used to store the
taskid, a 16-bit signed integer value. The taskid is needed to identify the task within various
function calls. It is also needed in the C-Startup code (see file __v4.c in cc\lib).

© 2008 mocom software GmbH & Co KG 85/399

IV. mCAT Kernel Reference

mCAT 2.20

2.3.1. The Data Structures before MCAT 2.20-R00168

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification in both size and structure!

typedef struct {
lword type;
lword tree;
THREAD thread;
} QUEUE;

typedef struct {
IMD imd;
THREAD main;
lword resO;
lword resl;
lword res2;
lword res3;
word flags;
word quemax;
word quecnt;
QUEUE queue[l];

} TASK;

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Type of accepted messages */

message queue */
waiting thread */

IMD of this task */
pointer to main THREAD */

MUST BE NULL
MUST BE NULL
MUST BE NULL
MUST BE NULL

*/
*/
*/
*/

Task feature / state flags */
number of available queue descriptors */

number of used queue descriptors */

array of queue descriptors */

2.3.2. The Data Structures for non TLCS platforms, MCAT 2.10-R00168 and later

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification in both size and structure!

typedef struct {
MCATMSG
UINT32
THREAD

} MQUEUE;

RTTI
RTTI
union {
struct _ ws_

struct task
struct mthread

void

struct mddesc

*tree;
id; // the ass.
*waiting; // the ass.

typedef struct mddesc {
rtti;

ownery;

*wWs;
*tsk;
*thread;

*next;

*owner;

// the message tree

msgid
thread

86/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

} link;

UNSIGNED max; // maximum number of possible queues
UNSIGNED avail; // number of allocated queues

MQUEUE queues([4]; // the queues, minimum 4

} MQUEUEDESC;

typedef struct task {

RTTI rtti; // runtime type identifier

IMD *imd; // pointer to module identifier
THREAD *main; // pointer to main thread
UINT32 res0; // place holder

UINT32 resl;

MQUEUEDESC *qd; // queues

} TASK;

2.4. Function Reference

A task has, like an interrupt driver, an identification number called "task id" or "task number".
This id is assigned to the task during the TaskCreate kernel function call. A task is ad-
dressed by this id in contrast to a thread which cannot be addressed globally. For that rea-
son it's possible to send a message to a task but not to a thread.

© 2008 mocom software GmbH & Co KG 87/399

IV. mCAT Kernel Reference mCAT 2.20

I TaskCreate

Function:

C-Prototype:

Arguments:

Returns:
Supported:

Comments:

Creates a task for use by mCAT. At this time the object code must be
resident in memory, it must contain a valid IMD (task header) and the
program code for Tasklnit and TaskMain. TaskCreate does not activate
the task.

INTEGER TaskCreate (IMD *imd, INTEGER dir, INT16 *error, INTE-

GER queues);

imd Pointer to a data structure IMD witch can be generated by
the CIMD.EXE utility. See tools manual for more informa-
tion.

dir Assign numbers form the bottom (0) or the top of the list
(MAX-TASK, for ex. 15). Allows the two predefined values
"FromBottom" or "FromTop" FromBottom is reserved for
BITBUS GBS TASK only (as BITBUS GBS TASK must be
task ‘0"), FromTop is for all other purposes.

Error code SYS_ERR_OK ok

SYS_ERR_OUT_OF_MEMORY No memory available

SYS_ERR_ID_OVERFLOW Can't allocate ID (no

more tasks)

queues If greater than 0, your task will be able to support more
than the default queue. A value of 0 assumes the default
value of 1 queue, a one means one additional queue. You
need more than the default queue if you plan to have spe-
cialized threads waiting for messages form a specific
source.
Taskid, a 16 bit integer for task identification

mCAT All versions

Hardware All

Within the mCAT runtime library there is a support function called
TaskStartup. It has the same calling convention as TaskCreate. In
contrast, TaskStartup automatically calls TaskActivate after suc-

cessful creation of a Task.

88/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

I TaskDelete

Function: Deletes a task (its main thread) and all of its threads. Stops operation
and - in case a dynamic memory manager is installed - frees memory
used for this task and its threads.

C-Prototype: INTEGER TaskDelete (INTEGER taskid);

Arguments: taskid Identification assigned to task by TaskCreate
Returns: Error code SYS_ERR_OK ok

SYS_ERR_NO_TASK Task does not exist
Supported: mCAT All versions

Hardware All

Comments:

| TaskActivate

Function: Activates a task, i.e. puts it into the list of tasks ready to receive the pro-
cessor if their priority is the highest on the list. If the task being activated
has a higher priority than the currently running task, the current task is
interrupted and the newly activated task starts immediately. A task must
have been created before it can be activated. The function TaskStartup
both creates and activates a task.

TaskActivate activates the main thread of the task by calling ThreadSig-

nal.
C-Prototype: INTEGER TaskActivate (INTEGER taskid, UNSIGNED prio);
Arguments: taskid Identification assigned to task by TaskCreate
prio Priority to override the startup priority defined in the task
header IMD.
Returns: Error code SYS_ERR_NO_TASK Task not existent
Supported: mCAT All versions

Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 89/399

IV. mCAT Kernel Reference mCAT 2.20

I TaskSuspend

Function: All threads of this task are suspended, i.e. they are taken out of the
ready list and are marked suspended. Signals or messages sent to sus-
pended tasks are not queued. The only way to re-activate a suspended
task is to use the TaskResume call. Use this call for debugging purpos-
es.

TaskSuspend calls ThreadSuspend to resume all threads associated
with the Task.
C-Prototype: INTEGER TaskSuspend (INTEGER taskid);

Arguments: taskid Identification assigned to task by TaskCreate

Returns: Error Code SYS_ERR_NO_TASK Task not existent
SYS_ERR_IS_SUSPENDED Task is already sus-
pended.

Supported: mCAT All versions

Hardware All

Comments:

90/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

I TaskResume

Function: Puts all threads of this task into the ready list again. Used for tasks that
had been suspended by TaskSuspend.

TaskResume calls ThreadResume to suspend all threads associated
with the Task.

C-Prototype: INTEGER TaskResume (INTEGER taskid);

Arguments: taskid Identification assigned to task by TaskCreate

Returns: Error Code SYS_ERR_NO_TASK Task not existent

SYS_ERR_IS_NOT_SUSPENDED

Task is not suspended.
Supported: mCAT All versions
Hardware All

Comments:

I TaskGetState

Function: Returns information about the main thread. For more information see
ThreadGetState.

C-Prototype: INTEGER TaskGetState (INTEGER taskid);

Arguments: taskid Identification assigned to task by TaskCreate

Returns: See ThreadGetState for more information

Supported: mCAT All versions

Hardware All
Comments:

© 2008 mocom software GmbH & Co KG 91/399

IV. mCAT Kernel Reference mCAT 2.20

I TaskGetPtr

Function: Returns a pointer to a task descriptor. Advanced and system use only.
C-Prototype: TASK *TaskGetPtr (INTEGER taskid);

Arguments: taskid Identification assigned to task by TaskCreate

Returns: Pointer Pointer to Task descriptor. If NULL, task is unknown.
Supported: mCAT All versions

Hardware All
Comments:

3. mCAT Threads

3.1. The Concept of Threads

This section describes thread related functions. A thread is the smallest executable program
unit in mCAT. It is not globally addressable and can only be used within tasks. A thread can

be dedicated to a special queue (special message types) thus work on data that comes from
a single source. It might be used to handle a certain peripheral or communication channel.

However, it is much more efficent to do the same job using a periodic event like a “Tick-

erMsg” to do some event polling.

Threads can be in one of the following states:
1. SUSPENDED

It's not in the list of ready threads and marked as suspended. It can be activated only by a

call to ThreadResume. Signals sent to a suspended thread are lost.
2. SLEEPING
A thread is sleeping if it was just created or if a ThreadSleep, ThreadSleepQueued or Msg-

Wait call was issued. Contrary to a suspended thread, it will get back into the ready list by

receiving a signal (a message).
3. DELAYED

A thread is waiting for a timeout to elapse inside a ThreadDelay call. Nothing but the elapsed

timeout can remove the thread form this state.

4. READY

92/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

If a thread is not suspended and not in delayed state, it can change form sleeping state into
the ready state when a signal (ThreadSignal, MsgSend et al.) is received. The thread is
added to the ready list. The thread with the highest priority in the ready list is the currently

running thread.
5. RUNNING

There can be only one running thread - the one on top priority in the ready list.

A thread can create child threads. Be careful when accessing variables form different

threads. Use Protect/Unprotect for critical sections.

3.2. Relation with other mCAT Concepts

Threads are the basic program unit in mCAT. Every task contains one or more threads. The
top most thread of a task is the main thread. A task without at least one thread is a dead

task.

3.3. Thread Related Data Structures

3.3.1. MCAT 2.10 and later - TLCS900 Platform

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification in both size and structure!

typedef struct thread {

struct thread *next; /* used for internal management */
struct _ thread *prev;
lword time; /* used for timeout */
lword null; /* reserved */
byte flags; /* "most important flags" */
byte prio; /* prio of thread */
lword taskid; /* own task */
struct _ thread *parent; /* parent thread ptr. */
struct _ thread *child; /* child thread ptr. */
lword xsp; /* act. stack pointer */
lword 1isp; /* initial stack pointer */
lword bsp; /* base of stack (lowest possible addr) */
lword 1ipc; /* initial pc */
byte iprio; /* initial priority */
byte resl; /* reserved */
} THREAD;

© 2008 mocom software GmbH & Co KG 93/399

IV. mCAT Kernel Reference mCAT 2.20

3.3.2. mCAT 2.20 — non TLCS platform

typedef struct mthread {

CPU_REGISTER cState; // CPU depending register model
XT timer; // timeout & round robin

struct mthread *next; // scheduler list next
struct mthread *prev; // scheduler list prev
struct mthread *parent; // parent thread ptr.
struct mthread *pnext; // parent thread chain
struct mthread *child; // child thread ptr.
UNSIGNED sigqg; // signal queue
UNSIGNED flags; // "most important flags"
UNSIGNED prio; // prio of thread
INTEGER retval; // retval of sleep
INTEGER taskid; // own task
INTEGER gid; // reply queue id
HLIST *hlist; // argument list
UINT32 bsp; // base of stack (lowest possible addr)
UINT32 isp; // initial stack pointer

} THREAD;

94/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

3.4. Function Reference

I ThreadCreate

Function: Creates a thread for use by mCAT. The function will generate a descrip-
tor structure (THREAD) and put the thread to the sleeping state: it must
receive a signal to run. The new thread is created in the task space of
the current task.

C-Prototype: THREAD *ThreadCreate (INTEGER (*start)(), long stacksize, UNSIGNED priority);

Arguments: start Pointer to start of thread code (label start)
stacksize Required size of stack in bytes. Suggested value: 1024

priority Starting priority of thread
Returns: Pointer Pointer to the thread descriptor or NULL if call fails
Supported: mCAT mMCATZ2 and higher

Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 95/399

IV. mCAT Kernel Reference mCAT 2.20

I ThreadCreateEx

Function:

C-Prototype:

Arguments:

Returns:
Supported:

Comments:

Creates a thread for use by mCAT. The function will generate a descrip-
tor structure (THREAD) and put the thread to the sleeping state: it must
receive a signal to run. The new thread is created in the task space of
the current task. The difference between ThreadCreate and Thread-
CreateEx is that you can pass an optional argument with ThreadCreate-
Ex. This argument is passed to the created thread function as an argu-

ment.

Please note that the thread function MUST be declared using
the SYS_FDECL macro! If you don't use it, you may not re-
ceive the argument of the TLCS platform:

INTEGER SYS_FDECL threadfunction(void *arg)

THREAD *ThreadCreateEx (INTEGER (*start)(), long stacksize, UNSIGNED priority,
void* args);

start Pointer to start of thread code (label start)

stacksize Required size of stack in bytes. Suggested value: 1024

priority Starting priority of thread

args Pointer passed to the thread function as an argument
Pointer Pointer to the thread descriptor or NULL if call fails
mCAT mCAT2.10-R00168 and higher

Hardware All

96/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20

| ThreadKill

IV. mCAT Kernel Reference

Function:

C-Prototype:

Arguments:

Returns:

Supported:

Comments:

Deletes a thread and all of its child threads. Stops operation and frees
memory used for stack and descriptor.
void ThreadKill (THREAD *thread);

thread Pointer to thread descriptor. Assigned to thread by Thread-
Create

none

mCAT All versions

Hardware All

I ThreadSuspend

Function:
C-Prototype:

Arguments:

Returns:

Supported:

Comments:

Suspends a thread. The thread will ignore all signals until it is resumed.
void ThreadSuspend (THREAD *thread);

thread Pointer to thread descriptor. Assigned to thread by Thread-
Create

none

mCAT All versions

Hardware All

I ThreadResume

Function:

C-Prototype:
Arguments:

Returns:

Supported:

Comments:

Will remove the suspended state. The thread will be able to receive sig-
nals again and if it was ready or running before it was put into suspend
state, it will be inserted into the ready list again, too. All signals and pos-
sible timeouts are lost.

void ThreadResume (THREAD *thread);

thread Pointer to thread descriptor. Assigned to thread by Thread-
Create

none

mCAT All versions

Hardware All

© 2008 mocom software GmbH & Co KG 97/399

IV. mCAT Kernel Reference mCAT 2.20

I ThreadSetPrio

Function:

C-Prototype:

Arguments:

Returns:

Supported:

Comments:

A new priority is assigned to the thread. If it is in the list of ready threads,
it will be removed and re-inserted at the new priority. If the thread is sus-
pended or sleeping, only the priority will be changed.

void ThreadSetPrio (THREAD *thread, UNSIGNED prio, INTEGER

fixed);

thread Pointer to thread descriptor. Assigned to thread by Thread-
Create

prio New priority.

fixed If fixed is true, the thread is set in fixed priority mode at pri-
ority prio. The Priority can not be boosted by a ThreadSig-
nal or by receiving a higher priority message.

none

mCAT All versions

Hardware All

I ThreadGetPrio

Function:
C-Prototype:
Arguments:

Returns:

Supported:

Comments:

Returns the current priority of the thread.

UNSIGNED ThreadGetPrio(THREAD *thread);

thread Pointer to thread descriptor. Assigned to thread by Thread-
Create
The current priority of the thread.

mCAT All versions

Hardware All

98/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

I ThreadGetState

Function: Returns information about the thread.

C-Prototype: INTEGER ThreadGetState (THREAD *thread);

Arguments: thread Pointer to thread descriptor. Assigned to thread by Thread-
Create

Returns: retval retval &« THREAD_SUSPENDED

retval & THREAD_DELAYED

retval & THREAD_FIXED_PRIO

retval & THREAD_IN_TQUE

retval & THREAD_READY
Supported: mCAT All versions
Hardware All
Comments: THREAD_SUSPENDED The Thread is suspended
THREAD_DELAYED The Thread is waiting inside a ThreadDelay
call for the timeout to elapse
THREAD_FIXED_PRIO The Thread is running at a fixed priority
THREAD_IN_TQUE The Thread is sleeping (THREAD_READY is
NOT set) and timeout is not 0. The Thread is
in the timeout queue.
THREAD_ READY Thread is in the Thread list, ready to run.
This is the READY STATE

© 2008 mocom software GmbH & Co KG 99/399

IV. mCAT Kernel Reference mCAT 2.20

I ThreadSlice

Function:
C-Prototype:
Arguments:

Returns:

Supported:

Comments:

I ThreadSleep

If there's at least one other thread in the ready list whose priority is equal
to that of the running thread, the next one will become ready instead.
void ThreadSlice (void);

None

None

mCAT All versions up to 2.08. Not available in later releases.
Hardware | All

This call should not be used anymore. It is included here for

completness only. This call will not be supported in mCAT 2.1

and higher.

Function:

C-Prototype:
Arguments:

Returns:

Supported:

Comments:

The running thread is put to the sleeping state and the next one in the
ready list gets the processor. The now sleeping thread will be waken up
by a signal send to it. If ms is not zero, the sleeping thread will be sig-
nalled after ms milliseconds. The function is used by mCAT message
passing (MsgWait).
INTEGER ThreadSleep (UINT32 ms);
ms Milliseconds to being signalled. Zero for infinite sleep. This
parameter is not supported in mCAT Versions lower than
2.06. With mCAT 2.10-R00168 use the macro
SYS_WAIT_INFINITE to signal an infinite wait instead of
“0”.
Error Code SYS_ERR_OK The thread was successfully sig-
naled
SYS_ERR_TIME_OUT The timeout elapsed befor a sig-

nal was received

mCAT Timeout supported with 2.06 and later

Error codes supported with 2.07 and later
Hardware All
Please check the alternate function ThreadSleepQueued for more op-

tions!

100/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

ThreadSleep TimecutTimer

PURGE SIGMAL
COUNTER SetReturn error =

ErnTimeout

Entry from
ThreadSleepCueued

REMOVE FROM READY

ThreadSignal
LIST gnai()

Preset Return error =
ErrQk

INSERT TIMERQUELE

GIVE URP CHU

EAT

Figure 10: ThreadSleep

Figure 1 Shows the control flow inside a ThreadSleep call. First, the signal counter is cleared

and the return code is preset to SYS_ERR_OK. Then, if a timeout is requested, the thread is

placed into the timeout queue (a background timer keeps control over the timeout queue).
Then the control over the CPU is given up. If a signal is received (the thread maybe signaled
by the timeout timer process or by another thread), the thread will get in control at exactly

the point where it gave it up earlier.

© 2008 mocom software GmbH & Co KG 101/399

IV. mCAT Kernel Reference mCAT 2.20

I ThreadSleepQueued

Function:

C-Prototype:
Arguments:

Returns:

Supported:

Comments:

This function is a derivative of “ThreadSleep”. If a function is signaled by
use of ThreadSignal before the signaled thread entered ThreadSleep(),
the signal is lost.

With ThreadSleepQueued, the incoming signals are counted (“queued”)

and you have now two more alternatives:
1. ThreadSleepQueued (tout, TRUE)

The signal(s) are no longer lost. When you enter ThreadSleepQueued
and there is already a signal pending, your current thread will return im-
mediately — it will NOT sleep! The signal queue is flushed (the counter

set to 0) and other signals lost.
2. ThreadSleepQueued (tout, FALSE)

Again: When you enter ThreadSleepQueued and there is already a sig-

nal pending, the function will be terminated immediately and returns to

the calling program. However, the signal queue is not flushed. The sig-

nal is dequeued (counter is decremented).

INTEGER ThreadSleepQueued (UINT32 ms, INTEGER flush);

ms Milliseconds to being signalled. Zero for infinite sleep. This
parameter is not supported in mCAT versions lower than
2.06. With mCAT 2.10-R00168 use the macro
SYS_WAIT_INFINITE to signal an infinite wait instead of

“0”.
flush TRUE: flush signal queue before leaving
ThreadSleepQueued
FALSE: do NOT flush signal queue before
leaving ThreadSleepQueued
Error Code SYS_ERR_OK The thread was successfully sig-
nalled

SYS_ERR_TIME_OUT The timeout elapsed before a sig-
nal was received
mCAT mCAT 2.09 and later
Hardware All

102/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

ThreadSleeplusued

Enter
ThreadSleep

Lo
: U(?

PURGE SIGMAL DECREMEMNT :
COUNTER SIGNAL COUNTER |

Figure 11: ThreadSleepQueued

Figure 2 Shows the control flow of a ThreadSleepQueued call. If no signal is pending, it just
branches to enter the std. ThreadSleep call. The difference to ThreadSleep is only important
if there are pending signals! Depending on the value of argument flush, the signal counter is

cleared or just decremented.

Anyway, the control returns to the calling thread immediately.

© 2008 mocom software GmbH & Co KG 103/399

IV. mCAT Kernel Reference mCAT 2.20

I ThreadDelay

Function:

C-Prototype:
Arguments:

Returns:

Supported:

Comments:

| ThreadSignal

ThreadDelay works the same way ThreadSleep does but with one little

difference: While the process is in a DELAY state, it will accept no

signals (by ThreadSignal or MsgSend) except the internal timeout

expired. This allows a thread to sleep for a defined delay without

unexpected interruption.

void ThreadDelay (UINT32 ms);

ms Milliseconds to being signalled. Zero for infinite sleep.
Please note that your thread will NEVER wakeup again if
you call this function with ms = SYS_WAIT_INFINITE.

None
mCAT All versions
Hardware All

Function:

C-Prototype:

Arguments:

Returns:

Supported:

Comments:

Puts a thread into the ready list (after ThreadCreate or Thread-
Sleep) using the priority given as an argument or with no change in
priority if this parameter is zero. If the thread is already ready and
the current priority of the thread is lower than the new priority, the

threads priority is boosted to the new value.
void ThreadSignal (THREAD *thread, UNSIGNED prio);

thread Pointer to thread descriptor. Assigned to thread by Thread-
Create

prio New priority or zero for no change.

none

mCAT All versions

Hardware All

104/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20

IV. mCAT Kernel Reference

Figure 12: ThreadSignal

Legend:

IN: entry point of a
ThreadSignal call.

fixed prio: Is the thread
in fixed priority
mode? This mode
can be set using
TreadSetPriority()
only.

priority: The current pri-
ority of the thread.

READY: A thread is
READY ifitis in the

list of ready threads.

INSERT: Insert a thread
into the READY list

REMOVE: Remove a
thread from READY
list

TopOfList: The thread
with the highest pri-
ority is always
“TopOfList”.

SWITCH: Perform a
thread-switch: Make
new thread the run-
ning thread.

© 2008 mocom software GmbH & Co KG

105/399

IV. mCAT Kernel Reference mCAT 2.20

I ThreadProtect

Function:

C-Prototype:
Arguments:
Returns:

Supported:

Comments:

This function protects multitasking/multithreading. This call is used be-
fore entering a critical section of code that must not be interrupted by
other Tasks / Threads.

void ThreadProtect (void);

None

None

mCAT All versions

Hardware All

For compatibility with mCAT 1.xx the macros Protect and UnProtect are
provided.

#define Protect() ThreadProtect()

I ThreadUnProtect

Function:

C-Prototype:
Arguments:
Returns:
Supported:

Comments:

Ends the critical section entered with ThreadProtect. With versions prio
to 2.09, ThreadUnProtect() unprotects multitasking/multithreading uncon-
ditionally. With versions below 2.09, UnProtect re-enables multithreading
unconditionally. With 2.09, an internal counter is maintained to be sure
that UnProtect re-enables multithreading only if it was called as often as
Protect. This was introduced to allow nested calls to Protect/UnProtect!
void ThreadUnProtect (void);

None

None

mCAT All versions

Hardware All

For compatibility with mCAT 1.xx the macros Protect and UnProtect are
provided.

#define UnProtect() ThreadUnProtect()

106/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

I ThreadCreateKrnl

Function: Creates a thread for use by mCAT. The function will generate a descrip-

tor structure (THREAD) and put the thread to the sleeping state: it must
receive a signal to run. The new thread is created in the task space of
the kernel task instead of the task space of the current task. This
call can be used to create threads without a task. Usually this call is used
to create background threads for use inside of libraries or interrupt

drivers.

C-Prototype: THREAD *ThreadCreateKrnl (INTEGER (*start)(), long stacksize, UNSIGNED priori-

ty, void* args);

Arguments: start Pointer to start of thread code (label start)

stacksize Required size of stack in bytes. Suggested value: 200

priority Starting priority of thread
args Pointer passed to the thread function as an argument
Returns: Pointer Pointer to the thread descriptor or NULL if call fails
Supported: mCAT mCAT2.09 and higher
Hardware All
Comments:
Example:

typedef struct {

UINT32 delay;
UINTS8 *out;

} ThreadArgs;

INTEGER MyThread (ThreadArgs *args)

{

thing

while (args) {
ThreadDelay (args->delay); // sleep configured time
*out = ~(*out):; // invert value .. Jjust to do some-

ThreadArgs args;
THREAD *thread;
args.delay = 100; args.out = (UINT8 *) Oxffffff; // some arguments
thread = ThreadCreateKrnl (MyThread, 400,128, &args) ;
if (thread) {
ThreadSignal (thread, 128) ;

© 2008 mocom software GmbH & Co KG 107/399

IV. mCAT Kernel Reference mCAT 2.20

I ThreadSetHandler

Function: The ThreadSetHandler function is passed the address of a function
(func) to be called when the program terminates. Successive calls to
ThreadSetHandler create a register of functions that are executed in
LIFO (last-in-first-out) order. The functions passed to ThreadSetHandler
take the argument args as a parameters. ThreadSetHandler uses the
heap to hold the register of functions. Thus, the number of functions that
can be registered is limited only by heap memory.

C-Prototype: void *ThreadSetHandler (INTEGER type, void (*func)(), void* args);

Arguments: type Selects the type of handler. Currently only exit handlers are

supported. Therefore set this argument to
KRNL_HDL_TYPE_ATEXIT

func Function to be called
args Optional argument for func()
Returns: Pointer Pointer to an internal data structure on success or NULL if
call fails
Supported: mCAT MCAT2.10 R00013 and higher

Hardware | All
Comments: This function is used to implement std. ANSI-C function atexit().

void _ cdecl exit func (char *args)
{

WrStr (Yatexit: “);

WrStr (args) ;

WrLn () ;
}

void TaskMain ()

{
ThreadSetHandler (KRNL HDL TYPE ATEXIT, exit func, “task deleted”);
TaskDelete (Self) ;

}

Output:
2+>init 402000

atexit: task deleted
2+>

108/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

4. mCAT Message Passing

4.1. The Concept of Message Passing

A message is a data structure that is declared and filled by the sender. It is send to the re-
ceivers message queue. There is no real data transfer happening when a message is send,

instead, the receiving task is send a signal (see ThreadSignal) with a priority attached to it.

If the receiving task is waiting for a message, it is signaled and its priority is set to the priority
of the message received. If the receiver is not sleeping, its priority is boosted to the priority

of the message to prevent an effect know as priority inversion.

Pointers to the message are put into the receivers queue which actually is just a list of mes-

sage pointers sorted by priority.

To differentiate between messages of various origins, a message type code (msg.type) is
provided by the server task. A client can query the type code to request a defined functionali-
ty.

mMCAT 2 supports multiple message queues. A separate queue can be created for a specific

type code only. All messages that do not have a dedicated queue are queued in the default
queue (queueid = 0). Separate queues can make life easier sometimes.

4.2. Relation with other mCAT Concepts

The functions of the MSG (message) group are closely related to the TASK group. They
build the fundamental operating mechanism for mCAT.

© 2008 mocom software GmbH & Co KG 109/399

IV. mCAT Kernel Reference mCAT 2.20

4.3. The MSGID & MSG Data Structures

Be aware that this data structure is documented for completeness and reference

only! It should not be accessed directly! This structure is subject of change without

notification in both size and structure!

typedef struct {

UINT32 next; /* internal link */

UINT32 link; /* reserved */

UINT32 name; /* pointer to name */

INTEGER (*envt) () ; /* reserved for future use */

UNSIGNED node; /* node information, currently not used

With mCAT 210T00106 0 is defined and
set for local MSGID's */

INTEGER hdl; /* task / interrupt ident of server */
UINT32 id; /* type stored in the message header */
} MSGID;

An application message can be formed using the mCAT message header “MSG”.

typedef struct {
UINT32 right; /* internal link */
UINT32 left; /* internal link */
UINT16 len; /* length over all */
UINT32 type; /* “id” from MSGID structure */
UINT16 net; /* internal routing information */
INT16 src; /* requesters task / interrupt ident */
UINTS8 prio; /* priority requester->server */
UINTS8 reply; /* priority server->requester */
UINT16 error; /* error code */

} MSG;

A simple example:

typedef struct {

MSG hdr; /* the std. mCAT message header */
INT32 part counter; /* some application data */
} MyMSG;

You can now send and receive messages of type MyMSG. Where ever “MSG *” is used as

an argument to a kernel function, you can now use your own message:

MyMSG report;
MsgSendRequest (&report.hdr, Self, ReportId, 200,200) ;

110/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

4.4. Messages: How to?
1. Create a C-Header file (“mymsges.h”)

* Design and include your message structure(s).

typedef struct {

MSG hdr; /* the std. mCAT message header */
UINT32 part counter; /* some application data */
} MyMSG;

* name your message

#define MyMSGID “my/part counter”
2. Write the server
* Include “mymsges.h”

* Use MsgldCreate() to register the MSGID

my msg id = MsgIdCreate (Self, MyMSGID, NULL);
* Write the code to handle the message
3. Write the client code
* Include “mymsges.h”

* Use MsgldQuery() to query for the server

my msg id = MsgIdQuery (MyMSGID);

* Write the code to send requests to the server

4.5. Flow Charts

© 2008 mocom software GmbH & Co KG 111/399

IV. mCAT Kernel Reference

Selact
QIUEUE

TES

ThreadSleep FETCH MZG

FETCH MSG ThreadSetFrio
o
EXIT

Figure 13: MsgWait

mCAT 2.20

Figure 4 Shows the control flow inside a
MsgWait call. After selecting the re-
quested queue MsgWait checks if there
is at least one message pending.

If so, it fetches the message from the
queue and sets the current thread's pri-
ority to the message priority and returns.

If not, the current thread is send to
sleep. It will be signaled again (wake up)
if a timeout occurs, the thread is explicit-
ly signaled from another thread or im-
plicitly signaled by a MsgSend type call
(see Figure 5, page 26). No matter why
the Thread was signaled, MsgWait then
tries to fetch the most recent message
from the queue. If there is a message,
MsgWait returns the pointer to this mes-

sage. If not it returns NULL.

112/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

Select QUEUE

YES
PASSMSG?

ENQUEUE MSG | ENQUEUE MSG | wakeup(ws, msg) |

msg
returned?

ThreadSignal() | wakeup(ws) | ENQUEUE MSG |

Figure 14: MsgSend

Figure 5 Shows the control flow of a MsgSend type call (MsgSend, MsgSendReply, or Ms-
gSendRequest). After selecting the destination queue, the flow is different for tasks and in-

terrupt drivers.

If the destination is a task, the message is inserted into the tasks message queue and the
associated thread is signalled. This is what we called an implicit signal. This is the signal that

wakes up a sleeping thread inside a MsgWait call (See Figure 4, page 25).

If the destination is an interrupt driver and the version of mCAT is below 2.08, the message
is inserted into the interrupt drivers message queue and the interrupt drivers wakeup func-
tion is called (if present) to inform the driver about the new message (PASSMSG=NO).

© 2008 mocom software GmbH & Co KG 113/399

IV. mCAT Kernel Reference mCAT 2.20

For mCAT 2.08 or later, it is also possible to use a option called PASSMSG. In this case
wakeup is called first with the message as an argument. If wakeup returns the message
pointer, the message will be inserted into the queue, if it returns NULL it will not. See chapter

5 for more information.

Because PASSMSG=YES has some advantages, it is the preferred methodology. On other
platforms than the TLCS platform, PASSMSG=YES is the only option available!

114/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

IV. mCAT Kernel Reference

4.6. Function Reference

I MsgldCreate

Function:

C-Prototype:

Arguments:

Returns:
Supported:

Comments:

I MsgldQuery

To register a new message type, mCAT has to be informed about the
type name and will in turn assign a handle or type id that is called msgid.
The name of the message can contain any standard ASCII character
and there is no length restriction (however, it is recommended not to use
strings longer than 32 byte). Please don't start your names with "mCAT/"
as system messages use this prefix. It is a good practice to use a per-
sonal prefix for your applications (“my-prefix/my-app/do-this-and-that”).
MSGID *MsgldCreate (INTEGER self, char *name, MSGID *msgid);
self ID of creating task

name User defined name

msgid If NULL, MSGID is allocated automatically

If NOT NULL, "msgid" is used to store information. First
use is preferred. This argument will not be supported in fu-
ture versions (> 2.09).

Pointer Pointer to message id structure

mCAT All versions

Hardware All

Function:

C-Prototype:
Arguments:
Returns:
Supported:

Comments:

Use MsgldQuery to find out the message id (msgid) of an already
defined message type by name. Usually the client task will need to

know the msgid of the server-defined message type.
MSGID MsgldQuery (char *name)

name Name to be searched for.
Pointer Pointer to message id, NULL if name is not found.
mCAT All versions

Hardware All

© 2008 mocom software GmbH & Co KG 115/399

IV. mCAT Kernel Reference

I MsgSendRequest

mCAT 2.20

Function:

C-Prototype:

Arguments:

Returns:

Supported:

Comments:

A message is sent as a request to a task or interrupt handler,

awaiting a reply. The message header is filled automatically.
INTEGER MsgSendRequest (MSG *msg, INTEGER self, MSGID *ms-
gid, UNSIGNED prio, UNSIGNED reply);

msg
self
msgid
prio

reply

Error Code

mCAT
Hardware

Pointer to message to be sent

Task id of sending task (self)

Pointer to message id structure

Priority assigned to this message. Value between 1 (low)
and 255.

Priority requested for reply. The receiver usually moves this
value to the priority field of the reply message (automatical-
ly when using MsgSendReply). Special values for "reply":

0: This message IS a reply! Must not be used in a
MsgSendRequest call!

FFh: Should not be used.
SYS ERR OK Ok

SYS ERR NO TASK Destination task not existent

SYS_ERR_NO TARGET Destination interrupt handler

not existent

All versions
All

116/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20

I MsgSendReply

IV. mCAT Kernel Reference

Function:

C-Prototype:

Arguments:

Returns:

Supported:

Comments:

A msg is replied to the requesting task. The major duty of Ms-

gSendReply is to copy the field msg->reply of the message header

to msg->prio and then to clear msg->reply. Then the msg is sent to

msg->src. The own taskid “Self” is used to prevent an infinite han-

dling of a message if msg->src is equal to Self!
INTEGER MsgSendReply (MSG *msg, INTEGER self, UNSIGNED er-

ror);
msg
self
error

Error
Code

mCAT
Hardware

Pointer to reply message
Own taskid, necessary to prevent deadlocks
Reply code sent to requester:

ACK Reply ok

NAK Error (cannot interpret message).

Will be filled into msg->error. Beside of ACK and NAK, a
user defined error code can be sent. With mCAT 2.00 the
error field is 16-Bit.

SYS_ERR_OK Ok

SYS _ERR_NO _TASK Destination task not existent

SYS_ERR_NO_TARGET Destination interrupt handler

not existent

All versions
All

© 2008 mocom software GmbH & Co KG

117/399

IV. mCAT Kernel Reference mCAT 2.20

I MsgSend

Function: Send a message to task taskid. The user is responsible for filling the
message header.
C-Prototype: INTEGER MsgSend (INTEGER taskid, MSG *msg);

Arguments: taskid ID code of destination task.
msg Pointer to the message to be sent.
Returns: Error Code SYS_ERR_OK Ok
SYS_ERR_NO_TASK Destination task not existent

SYS_ERR_NO TARGET Destination interrupt handler

not existent

Supported: mCAT All versions
Hardware | All
Comments:
I MsgPost
Function: Send a message to task taskid just as with MsgSend however without is-

suing a signal to the destination task. This prevents task switching and
allows the source task to continue even if the message sent has a higher
priority than itself.

C-Prototype: INTEGER MsgPost (INTEGER taskid, MSG *msg);

Arguments: taskid ID code of destination task.
msg Pointer to the message to be posted.
Returns: SYS_ERR_OK Ok
SYS_ERR_NO_TASK Destination task not existent

SYS_ERR_NO_TARGET Destination interrupt handler

not existent

Supported: mCAT All versions

Hardware All

Comments:

118/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

I MsgWait

IV. mCAT Kernel Reference

Function: Put yourself to the sleeping state until a message arrives at queue hdl or

the timeout timeout has passed. A call to MsgWait effectively stops task

execution and lets other tasks run until the desired message is received.

If a message with sufficient priority is waiting at the queue, task execu-

tion continues. A timeout condition can be checked by testing the mes-

sage pointer to be equal to NULL.
C-Prototype: MSG *MsgWait (INTEGER hdl, UINT32 timeout);

Arguments: hdl

timeout

Returns: Pointer

Supported: mCAT
Hardware

Comments:

Handle associated with the queue this call waits for. Zero if
this call waits for the default queue. A specific handle (as-
signed by MsgAddQueue) if we wait at a queue specialized
on one specific message type.

Timeout length in milliseconds. INFINITE if no timeout.

This parameter is not supported in mCAT Versions lower
than 2.06. With mCAT 2.10-R00168 and higher use
the macro SYS_WAIT_INFINITE to signal an infinite

wait instead of “0” in previous versions.

Pointer to incoming message OR NULL if the desired
queue doesn't exist OR if timeout elapsed.

All versions

All

© 2008 mocom software GmbH & Co KG

119/399

IV. mCAT Kernel Reference mCAT 2.20

I MsgUpdate

Function:

C-Prototype:

Arguments:

Returns:

Supported:

Comments:

A message is sent as a request to a task or interrupt handler,
awaiting a reply. The reply will NOT be send to the tasks queues
as usual but send to a hidden queue private to the current thread.
After sending the request, MsgUpdate waits for the reply in front

of the hidden queue.

This function provides a totally easy and save method to send and

receive a message in a client application with a single function call.

The message header is filled automatically. The priority of the call-
ing thread is not changed, the request is send with the current

threads priority.

You should be very careful using a timeout with this function. A
timeout will signal a fatal system failure and should be handled like
this!

MSG *MsgUpdate (MSG *msg, MSGID *msgid, UINT32 timeout);

msg Pointer to message to be sent

msgid Pointer to message id structure

timeout Timeout length in milliseconds. SYS_WAIT_INFINITE to
wait infinite.

MSG * Pointer to the replied message or NULL if TIMEOUT
or fail

mCAT 2.10 and higher

Hardware All

This function can not be used for BITBUS master applications
— the BITBUS driver can not handle the hidden queues yet.

Be sure not to send a message to your own task when your
current thread is intended to handle those types of messages!
A DEADLOCK will occur!

Must not be used inside interrupt handlers!

120/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference
I MsgGet
Function: Read a message from queue hdl. If “hdl” is zero, we read from the de-
fault queue. This is a MsgWait without timeout and total freedom to ac-
cess any task or interrupt driver (because taskid is given). This call is
needed inside an interrupt driver to fetch a message from its queues.
C-Prototype: MSG *MsgGet (INTEGER taskid, INTEGER hdl);
Arguments: taskid Own taskid
hdl Handle associated with the queue this call queries. Zero if
this call goes to the default queue. A specific handle (as-
signed by MsgAddQueue) if we read from a queue special-
ized on one specific message type.
Returns: Pointer Pointer to desired message or NULL if no message avail-
able.
Supported: mCAT All versions
Hardware All
Comments:

© 2008 mocom software GmbH & Co KG

121/399

IV. mCAT Kernel Reference mCAT 2.20

I MsgAddQueue

Function: If you have created your tasks with the queues parameter greater than 1,
multiple queues are allowed. To use them, the corresponding message
types (MSGID) to be handled by these queues must be defined. This is
the task of MsgAddQueue. It returns a queue handle associated with a
specific message type. This handle is used in the MsgWait and MsgGet

functions.
C-Prototype: INTEGER MsgAddQueue (INTEGER taskid, UINT32 msgid);
Arguments: taskid Own taskid
msgid Message type MSGID to associate with the queue. Msgid
is the type code stored in msg.type / msgid.id. To get it,
use MsgldQuery.
Returns: Handle or zero for error (no more queues available, check
TaskCreate).
Supported: mCAT All versions

Hardware All

Comments:

I MsgDelQueue

Function: Free the queue specified by hdl. All waiting requests are sent back to
their owners (error = NAK), replies are ignored. A waiting thread is sig-
nalled at the current priority level. MsgWait will return O (not supported).
This function is only used for debugging.

C-Prototype: INTEGER MsgDelQueue (INTEGER taskid, INTEGER hdl);

Arguments: taskid Own taskid

hdl Queue handle
Returns: Error Code SYS_ERR_OK
Supported: mCAT All versions

Hardware All

Comments:

122/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

5. mCAT Interrupts and QuickISR Interrupts

5.1. The Concept of Interrupt Drivers

To understand an mCAT interrupt driver you have to learn about three functions and one
data structure. The functions are:

1. “service”. The interrupt service routine

2. “wakeup”: The message service routine

”

3. “go™ The driver enable call

5.1.1. The WorkSpace Data Structure

The interrupt driver workspace structure is needed to store data needed to manage the inter-
rupt driver. For example a pointer to the private interrupt stack is included as well as the
queues to store messages send to the interrupt driver. The interrupts workspace is compara-
ble to a tasks TASK structure.

All service routines (service, wakeup and go) are called with the WS pointer as argument.
This may help to distinguish between several interrupt sources handled by the same code as
well as it helps to write drivers that do not need “static” variables in RAM. How does this

work?

If you add your variables to the end of a WS structure like this

typedef struct {

WS SH

long counter;
} MywWsS;

you can allocate the entire structure by just calling Intinstall() with the size of your structure
(sizeof(MyWS)) instead of calling it with (sizeof(WS)). Your variables are now in the dynami-
cally allocated RAM area and you must no longer worry where to place them. All mCAT

drivers are written in this way.

5.1.2. WS Data Structure on the TLCS platform

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification!

© 2008 mocom software GmbH & Co KG 123/399

IV. mCAT Kernel Reference

mCAT 2.20

HOWEVER, THE SIZE OF THIS STRUCTURE WAS FIXED TO 4EH WITH ALL

mCAT UP TO 2.09!

typedef struct {
IMD
int
int
int
int
int
word
word
word
QUEUE
void
word
word
long

} WS;

imd;
(*service) () ;
(*notify) ();
(*cservice) ();
(*wakeup) () ;
(*go) ()
flags;
quemax;
quecnt;

queue [3];
*stack;
intque;

wres;

lres;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

IMD */

ASM-service call */

notify function */
c-service call */

wakeup function */

called after system boot */
flags field */

number of queues (3) */
number of used queues */

a interrupt driver can have 3 queues */
interrupt stack pointer */
reserved for future use */
reserved for future use */
reserved for future use */

5.1.3. WS Data Structure on non TLCS platforms

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification!

typedef struct
RTTI
IMD
INTEGER
MSG *
INTEGER
MQUEUEDESC

} WS;

{

rtti;

*imd;
(*service) () ;
(*wakeup) () ;
(*go) ()

*qd;

//
//
//
!/
//
//

runtime type identifier
pointer to module identifier
pointer to service routine
wakeup pointer

enable pointer

queues

124/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20

IV. mCAT Kernel Reference

5.1.4. The “service” Function

I service
Function: Interrupt service routine (ISR). Is called after an interrupt occurred. The
stack is the local interrupt stack created inside the IntInstall() call, inter-
rupts of same and lower levels are disabled. The pointer to the interrupts
workspace is passed. This function can be declared as “__adecl” with C-
Compiler version 4 or higher.
You may extend WS with your application specific data. Example:
typedef struct {
WS SH
long product count;
} MywWsS;
void SYS FDECL service (MyWS *ws)
{
}
You may call MsgGet() to retrieve a message or any “MsgSend” type
function to send a message to another interrupt driver or task.
C-Prototype: void SYS_FDECL service (WS *ws);
Arguments: ws Pointer to the allocated workspace
Returns: None
Supported: mCAT All versions
Hardware All
Comments:

5.1.5. The “wakeup” Function

For an interrupt driver at least “service” has to be implemented. A wakeup function is needed

to inform the driver if a message was received. This must be explained a bit more precisely.

First, let us classify interrupt drivers into the following basic classes:

1. periodic
2. input

3. output

It depends on the class of driver whether you need a wakeup function or not:

© 2008 mocom software GmbH & Co KG 125/399

IV. mCAT Kernel Reference mCAT 2.20

A periodic class interrupt driver receives an interrupt from the hardware once every time
slice. No software interaction is needed to make sure the next interrupt will be issued. Exam-

ple: A periodic timer interrupt. You need no wakeup function.

An input class interrupt driver receives an interrupt from the hardware when ever a data item
gets available. No software interaction is needed to make sure the next interrupt will be is-
sued after data is read. Example: A UART receiving characters. You need no wakeup func-

tion (but sometimes you may use it anyway, because it can make a complex design simpler)!

An output class interrupt driver sends data to a hardware device and receives an interrupt in
turn to output the next unit of data. Example: Sending a string to a serial port. When all data
is send, the final interrupt can not be served anymore, it is lost. Sometimes we speak of a
sleeping state the driver is in. No other interrupt will occur until not another data unit is out-
put. But who shall do this? Right, it is the Wakeup() call. New data arrives and needs to be
handled. In our example, Wakeup() would output the first character of the new string. After
sending the first character a new interrupt would occur and the normal output mechanism
would handle the rest of the string. Wakeup() may look like this:

MSG *Wakeup (MYWS *ws, MSG *in)
{
if (ws->tx.sleeping) {
// ISR sleep state, start transmission
output one byte (ws,in->datal[0]);
// save message as current under service
ws->tx.current output buffer = in; // message top be served
ws->tx.current output counter = 1; // first char already sent
// exit sleeping state
ws->tx.sleeping = FALSE;
in = NULL; // in is under service, return NULL!
} /* endif */

return in;

}

With mCAT 2.08 we introduced a new Option: PASSMSG mode for the wakeup function. If
enabled, the message is not enqueued but it is passed to the wakeup function as a second
argument. If it can be handled by the wakeup function, wakeup returns NULL. If not, wakeup
returns the message — it will be queued in this case. This mode make things easier in some
cases. For the different control flows of wakeup function with and without PASSMODE op-
tion, please refer to Figure 5: Loading a SHX-File from the ComamndLline, page 26.

126/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference
I wakeup
Function: Do the first data output operation to start the interrupt procedure. Be
aware that interrupts are disabled up to and including level 4 while calling
wakeup. Do not re-enable interrupts and keep wakeup as short and fast
as possible.
C-Prototype: MSG * SYS_FDECL wakeup (WS *ws, MSG *in); (PASSMSG mode)
void wakeup (WS *ws); (std. mode)
Arguments: ws The workspace pointer
in Pointer to the message just received. PASSMSG mode
only. If the message can be handled immediately inside
wakeup, return NULL. if it can not be handled return the
message — it will be queued then! This will reduce the need
to call “MsgGet” in some cases and speed up things a bit.
However, be careful not to handle messages in wakeup
while others still waiting in the queue (MsgGet).
Returns: None
Supported: mCAT All versions. PASSMSG mode is supported in mCAT 2.08
or higher.
Hardware All
Comments:

© 2008 mocom software GmbH & Co KG

127/399

IV. mCAT Kernel Reference mCAT 2.20

5.1.6. The “go” Function

L

Function: Called after system initialisation, just before the system enables inter-
rupts. Used to finally enable hardware.
C-Prototype: void go (WS *ws);

Arguments: ws The workspace pointer
Returns: None
Supported: mCAT All versions.

Hardware All

Comments:

5.1.7. The “notify” Function

The notify function has been supported in all mMCAT Versions up to and including 2.09. It will
not be supported in 2.1 or higher. Do not write drivers using this obsolete technology.

5.1.8. Important Note

Within an interrupt driver the use of ThreadSleep, ThreadSleepQueued, Thread-

Delay and MsgWait is strictly prohibited.

5.2. TLCS900 Interrupt Level

With mCAT 2.0x within the kernel only interrupts up to level 4 (4 included) are disabled in
critical sections. MCAT interrupts must not use higher levels than 4.

LEVEL 6 should not be used for interrupt service routines (ISR) at all - this level is reserved
for DMA operation. That is because the HDMA's of the TLCS900 H-CORE CPU's can be
stopped by a DI operation. They operate always on level 6! To guarantee best DMA perfor-
mance, disabling of level 6 must be minimized if it is necessary at all.

LEVEL 5 is reserved for QuickISR Interrupts. QuickISR MUST not use any other level!

128/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

5.3. QuickISR

QuickISR's are used for quick, ,overhead-free“ interrupt service. Typical applications for
those QuickISRs are counter overflow counters in software etc. - short, high frequency inter-
rupt handlers. A QuicklSR can communicate with other interrupt handlers or mCAT Tasks
via shared memory only! A QuicklSR must never call a MsgSend... or ThreadSignal system
call - or any other system call that may cause a task/thread switch.

5.3.1. QuickISR on Toshiba TLCS900 Platforms (mCAT 2.10)

Best language to write QuickISR's is assembler, because C will use the stack to much. If a
QuickISR handler is written in C - the installation of an own stack frame is recommended!

It is possible to pass a previously defined arguments with the QucikISR call. In that case as-
sembly is required anyway, because C cannot handle arguments to interrupt functions.

The QuickISR is attached using the new IntSetTrap call. Use IntSetTrap for QuickISR's and
non-maskable interrupts only (SWIx, NMI, WatchDog).

It is forbidden to attach an ISR with LEVEL < 5 using IntSetTrap. Do not load the stack within
a QuickISR with more than 8 bytes (2 32-bit values)

The two examples show a simple overflow counter. Example 1 uses a fixed memory location
for the overflow counter. Example 2 uses a pointer to this counter passed as an argument!

overflow counter dl 1
quick 1:
push xwa ; save xwa
1d xwa, 1 ; increment counter
add (overflow counter), xwa
pop xwa
reti ; MUST be a RETI!
quick 2:
push xwa ; save xwa
1d xwa, (xspt4d) ; get pointer to argument
1d xwa, (xwa) ; get pointer to counter
addw (xwa+),1 ; increment LSW
adcw (xwa) , 0 ; add carry to MSW
pop xXwa ; restore xwa
add xsp, 4 ; remove argument pointer
reti ; MUST be a RETI!

© 2008 mocom software GmbH & Co KG 129/399

IV. mCAT Kernel Reference mCAT 2.20

5.3.2. QuickISR on ARM7 platforms (mCAT 2.10-R00168)

The major difference to the TLCS900 platforms, mCAT 2.10-R00168 does not need assem-
bly-level programming for QucikISR's. The handler will look like this:

UINT32 counter;
void MyQickIsr (UINT32 *counter)
{

*counter = *counter + 1;

}

IntSetTrap (INT LINE 3,MyQuickIsr, &counter);
IntEnable (INT TIMER 0,SYS INT LEVEL 5);

5.4. Relation with other mCAT concepts

Interrupt Drivers and Tasks are the major module types. From the outside, the interface is
message passing and for a user it should not make any difference whether a service is im-

plemented as a task or as an interrupt driver.

Interrupt drivers are used if the response time needed is below 5ms.

5.5. Function reference
The INT group offers functions to install and control interrupt handlers.

These functions are only supported on TLCS900 hardware.

130/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

I Intinstall

Function: Installs a handler for hardware interrupts. The location of the workspace
is assigned by mCAT, only the size must be specified.
C-Prototype: INT *Intinstall (INTEGER intid, INTEGER (*service)(), INTEGER
(*cservice)(), INTEGER (*wakeup)(), INTEGER (*notify)(), long stack-
size, long wssize);
Arguments: intid Interrupt identifier
service Pointer to local function service. Used for assembly lan-
guage code. Not supported on non TLCS platforms.

cservice Pointer to local function cservice. Used for C language
code. If supplied, set service = NULL.

wakeup Pointer to function wakeup or NULL if no wakeup function
is needed. To activate “PASSMSG” wakeup, use the marco
“PASSMSG()” to pass wakeup.

notify Pointer to function notify or NULL if no notify function is
needed. “notify” functions are obsolete and should no
longer be used.

stacksize Size of private stack (not supported on all platforms)

wssize Size of private workspace. At least sizeof(WS)
Returns: Pointer to Int workspace
Supported: mCAT All versions. With mCAT2.08 the new “PASSMSG” wakeup

call is available (see “wakeup”).
Hardware All
Comments: Intinstall with a “PASSMSG” type wakeup function:

ws = IntInstall(IntLine4, // Interrupt line 4
NULL, // no assembler ISR
cisr, // C ISR!

PASSMSG (cwakeup) , // wakeup function
NULL, // no “notify”

0x100), // stacksize

sizeof (WS) // minimum size of WS

)i
ws->imd = &my_imd; // insert link to IMD

© 2008 mocom software GmbH & Co KG 131/399

IV. mCAT Kernel Reference

I IntSetTrap

mCAT 2.20

Function:

C-Prototype:

Arguments:

Returns:

Supported:

Comments:

I IntEnable

Attaches the ISR ,isr“ to interrupt ,intid“ (see appendix a for a list of valid

intid's). If ,arg“ is not NULL, it will be passed on the top of stack to the

ISR, else the stack is empty on ISR entry. If there was already an ISR

attached, the pointer to the previously used ISR is returned.
void *IntSetTrap(INTEGER intid, void *isr, void *arg)

intid
isr
arg

mCAT
Hardware

Interrupt identifier
pointer to ISR

pointer to optional argument or NULL

previously attached ISR or NULL

mCAT 2.06 and higher
All

Function:

C-Prototype:

Arguments:
Returns:
Supported:

Comments:

I IntDisable

Enables the specified interrupt source (TLCS900 INTE'xx' register)
INTEGER IntEnable (INTEGER intid);

intid

Error Code
mCAT
Hardware

Interrupt identifier
SYS_ERR_ILLEGAL_INT
All versions

All

No valid interrupt number

Function:

C-Prototype:

Arguments:
Returns:
Supported:

Comments:

Disables the specified interrupt source.
INTEGER IntDisable (INTEGER intid);

intid

Error Code
mCAT
Hardware

Interrupt identifier
SYS_ERR_ILLEGAL_INT
All versions

All

No valid interrupt number

132/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

I IntSetLevel

Function: Sets the level of the specified interrupt
C-Prototype: INTEGER SetintLevel (INTEGER intid, UNSIGNED level);
Arguments: intid Interrupt identifier
level Interrupt level

Returns: SYS_ERR_ILLEGAL_INT No valid interrupt

number

SYS _ERR _ILLEGAL_LEVEL No valid level number
Supported: mCAT All versions

Hardware All

Comments:

I IntGetLevel

Function: Reads the level of the specified interrupt
C-Prototype: UNSIGNED IntGetLevel(INTEGER intid)
Arguments: intid Interrupt identifier

Returns: Interrupt level

Supported: mCAT All versions

Hardware All
Comments:

© 2008 mocom software GmbH & Co KG 133/399

IV. mCAT Kernel Reference

I IntlsPending

mCAT 2.20

Function:
C-Prototype:
Arguments:

Returns:
Supported:

Comments:

Checks whether there is a pending interrupt for the specified handler.
INTEGER IntlsPending (INTEGER intid, INTEGER *error);

intid Interrupt identifier

error Pointer to error variable:
SYS ERR _OK ok
SYS_ERR _ILLEGAL_INT No valid interrupt number
TRUE is interrupt is pending

mCAT All versions

Hardware | All

134/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

6. mCAT Shared Libraries

6.1. The Concept of Shared Libraries

6.1.1. What is a Shared Library

A shared library is a piece of code implementing a set of functions that are not linked with
the application at compile time but at runtime. Shared Libraries are helpful to reduce the
code space needed, because the same library can be used from different modules.

In contrast to a message based interface (client-server), a Shared Library is a synchronous
interface. It is not prepared to deal with multitasking. If you have a single resource to man-
age and concurrent access by several tasks you should not use Shared Libraries.

6.1.2. A Shared Library Call

The C-Runtime library (linked with every C-module) supports a small wrapper function called

—_exec()”. This call is the one and only entry to the shared library mechanism. All Shared Li-

brary calls are implemented as C-Macros in the form:
#define MyLibraryFunction(p1,p2,..,pn) __exec(0x400201,p1,p2,..,pn)

The first number (here 0x40020l) is the Shared Library access code. It is a 32-Bit number

formed of:

libid << 2 fid << 2
31 16|15 0

“libid” is the libraries ordinal number assigned by “MIC”, the interface compiler. “fid” is the or-
dinal number of the function inside the Library “libid”.

6.1.3. Why Should | use “LOCAL” Structure?

MIC will presume that you will store all Library specific global variables into a special struc-
ture called “LOCAL”. This structure must be defined by the user (in the COMON/END-
COMON section of the LDF-File).

The advantage is that LOCAL will be automatically allocated at startup. You will not have the
need to worry where to place your globals at runtime. That way its role is a bit like WS in an
interrupt driver. Every function called gets a pointer to LOCAL as an argument.

© 2008 mocom software GmbH & Co KG 135/399

IV. mCAT Kernel Reference mCAT 2.20

6.2. Relation with other mCAT Concepts

All mCAT API-Functions of all modules (NVMEM, MEM, SERDRYV, ...) including the kernel it-
self are implemented as Shared Library

6.3. The Library Descriptor

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification!

typedef struct {

IMD *imd; /* pointer to module IMD */
UNSIGNED libid; /* ordinal number of the library */
UNSIGNED calls; /* number of calls in Jjump table */
INTEGER (*func[1]) () ; /* jump table */

} LIB;

6.4. MIC & LDF-Files

The MIC (mocom interface compiler) is used to make Shared Library design easy. The li-
brary and all its functions are described in a so called LDF (LIBRARY DEFINITION FILE).
MIC generates all files needed (modules initialization, wrapper files, includes). You just have
to add your code and a makefile. For MIC and LDF file format please refer to “mCAT tools

Documentation”.

6.5. Function Reference

This group adds some fundamental functions to the kernel. Most functions deal with the

SHARED LIBRARY, the repository for all of mMCATs code. The shared library can be extend-

ed by buying additional modules ore writing them yourself.

136/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

| SysAddLib

Function: Installs a Shared Library (ShLib) with library number libid and a pointer
lib to a library descriptor. This call is used in module initialization code
generated by MIC.

C-Prototype: INTEGER SysAddLib (UNSIGNED libid, void *lib, void *local);

Arguments: libid the major number of the library to be installed
lib pointer to the library descriptor
local pointer to local memory for that library
Returns:
Supported: mCAT All versions
Hardware -/-
Comments:

| SysGetLib

Function: Returns a pointer to a ShLib descriptor. May be used for status monitor-
ing or fast direct access to the functions.
C-Prototype: void *SysGetLib (UNSIGNED libid);

Arguments: libid the major number of the library to be installed
Returns: pointer to the library descriptor
Supported: mCAT All versions

Hardware -/-

Comments:

7. mCAT Trace & Debug Interface

7.1. Function Reference

Currently, trace functions are under development. For now, only the TraceWriteLog com-

mand is available.

© 2008 mocom software GmbH & Co KG 137/399

IV. mCAT Kernel Reference mCAT 2.20

I TraceWriteLog

Function: This function is used to write a string into the bootlog. The bootlog is
used to document the boot process and runtime errors. It can be read
using the command “show” of the SYSMON monitor.

User modules are allowed to write to the bootlog file too. Please note
that strings are not copied to bootlog but just their references are saved.
C-Prototype: void TraceWriteLog (char *msg);

Arguments: msg Pointer to user ASCII-Z-string.
Returns: None
Supported: mCAT All versions

Hardware All
Comments: Strings send to the bootlog by TraceWriteLog shall:

- start with a cr-fl sequence followed by a single space (“\r\n ”)

- end without any further cr and/or If

138/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

IV. mCAT Kernel Reference

8. mCAT Modules and the IMD (Initial Module Descriptor)

8.1. The Module / IMD Concept

As we heard before, a module is a compiled and linked unit of executable code. There are

tasks with one or more threads, a kernel thread, an interrupt driver, a shared libary, just ini-

tialization code. A module can contain one, some or all of these concepts at a time. If a mod-
ule is placed in (FLASH) ROM, mCAT will find it at system startup time and call its Tasklnit
function automatically.

An IMD (initial module descriptor) is needed in front of every module for automatic module

detection. This is a special data structure containing all information needed to start and

maintain the module.

Some of the information in the IMD is reserved for future use, some is used for task and in-

terrupt drivers only (stack, heap).

The important information in the header include:

* The name of the module

* The version (Format: “#.##") of the module

* The time tag “build” (UNIX time). The tag will be inserted by the utility TAG.EXE after the

module was linked.

8.2. IMD Reference

typedef struct {

word
void
void
lword
lword
lword
byte
byte
byte
char
char
word
} IMD;

pattern;

(*init) () ;

(*main) ()7
stack;
heap;
build;
priority;
mode;

id;
version[5];
name[17];

check;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

aa55=AUTOSTART, 0055, f£55 */
pointer to module init function */
pointer to task main */

stack size for this module */

heap size (currently not supported) */
32-Bit UNIX time stamp*/

initial priority */

mode, currently not used */

BITBUS function ID */

“X.XX” C-String */

“name” C-String */

hash of “name” */

© 2008 mocom software GmbH & Co KG

139/399

IV. mCAT Kernel Reference mCAT 2.20

8.2.1. mCAT 2.10-R00168

With mCAT 2.10-R00168 the IMD was extended to hold more information. This includes the
memory layout and the reserved memory information. Both are retrieved and inserted into
the IMD by the S3PATCH tool used in every standard mCAT makefile.

typedef struct {

UINT32 base; // start address
UINT32 length; // length of a memory area
} AREADESC;

typedef PACKED STRUCTURE struct {

UINT16 pattern; // aab5=AUTOSTART, 0055, ff55

INTEGER (*init) () ; // pointer auf init funktion

INTEGER (*main) () ; // pointer auf task main function
UINT32 stack; // stack size

UINT32 heap; // reserved

UINT32 build; // build time

UINTS priority; // start prio

UINTS mode; // mode

UINT8 id; // BITBUS FID

char version[5]; // "x.xx"

char name[17]; // "name"

UINT16 check; // checksum (name)

UINT16 exlen; // length of extended IMD from here on!
AREADESC rom; // rom address and length

AREADESC ram; // ram address and length

AREADESC romres; // reserved for rom address and length
AREADESC ramres; // reserved for ram address and length

} GNU_PACKED STRUCTURE IMD;

140/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

I SysGetimdPtr

Function: Returns a pointer to a tasks or shared libraries IMD structure. May be
used for status monitoring.
C-Prototype: IMD SysGetimdPtr (INTEGER cmd, INTEGER id);

Arguments: cmd SYS _GET_IMD_BY_LIBID (0)
SYS_GET_IMD_BY_ID (-1)
SYS_GET_IMD_BY_ACTIVE (-2)
id taskid / libid / intid
Returns: Pointer to task, interrupt driver or shared library IMD.
Supported: mCAT All versions, with mCAT2.10T00284 and later the three

commands are supported. Before that version, the function
returned the LIBIMD if cmd was 0 and the task/intid if it was
not 0. The new command SYS_GET_IMD_BY_ACTIVE re-
turns the IMD of the currently active task or interrupt driver,
even at boot time!

Hardware All

Comments:

8.3. INIT-Modules

8.3.1. What are INIT-Modules?

Init-Modules (aka Init) do not contain Task, Thread, Interrupt-Driver or Library creation code.
Usually a Init-Module contains a Tasklnit() function only.

The purpose of this type of functions is to modify the system at startup or at first use. The
Function TasklInit() is executed once at system start.

Inits can be used very creatively. For example we use INITs to setup the EEPROM memory
to default values when a hardware is powered up for the first time. This SYSTEM INIT will
program the EEPROM and then mark the page it resides in for deletion. Finally, the INIT will

use SysReset() to issue a restart.

So after the first (successful) powerup, the EEPROM is set, the INIT is removed and the
hardware and software using the values in EEPROM is well initialized. For example, the BIT-
BUS parameters (speed, node address, message length and number of buffers) are set to
default (375kBit/s, 3, 255, 8).

© 2008 mocom software GmbH & Co KG 141/399

IV. mCAT Kernel Reference mCAT 2.20

Another idea would be an INIT that checks a given RAM area for a valid module. INITcan

than start the RAM based module by calling its TaskInit() function.

The use of the functions ThreadSleep, ThreadSleepQueued, ThreadDelay and

MsgWait is not allowed inside an INIT!

8.3.2. How to Write an INIT

The makefile is pretty straight forward. The important switches to CIMD are:

-init=Init Rename TaskInit to Init
-main=NULL We need no TaskMain
-initmodule We are composing a INIT module

here is the full source of makefile:

PROJECT = initdemo
TARGET = std rom

CMD = -D$ (CORE) -D$ (HARD)
OBJFILES = imd.$ (REL) $(PROJECT) .$ (REL)
INCFILES =

$ (PROJECT) .shx: $(OBJFILES)
$ (MKLNK) $ (TARGET) $(PROJECT) $ (OBJFILES)
$(LD) $(PROJECT) .LNK -0$ (PROJECT) .abs
$ (CONVERT) $ (PROJECT) .abs $(OF) $ (PROJECT) .shx
$ (S3PATCH) -1=$ (PROJECT) .map $ (PROJECT) .shx

S (PROJECT) .$ (REL) : S (PROJECT) .c $(INCFILES)
imd.$ (REL) : imd.c
imd.c: makefile

S (CIMD) -auto —-init=Init -main=NULL -initmodule -version=1.01 "mCAT/Jus-
tAInit" imd.c

The C-Source is easy also pretty easy to understand:

/*
* INITDEMO

*

* (c) 1999, 2004 mocom software GmbH & Co KG
*

* File: INITDEMO.C

*

* History:

*

* date version author comment

142/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

* 08.04.1999 Vv1.00 VG created

* 06.06.2004 Vv1.01 VG use CIMD, cross platform compatible

3PP PP PP PP M M A U P P P P P
*/

#include <mcat.h>
#include <simpleio.h>
#include <nvmem.h>
#include <eeprom.h>

long const purge = 0x0000;

void Init (IMD *imd)
{
/* a little menu */

loop {
/* write out menu */
WrStr ("\n\n\n") ;

WrStr (" 1. START\n");
WrStr (" 2. RESET\n");
WrStr (" 3. REMOVE\n\n");
WrStr (" YOUR CHOICE? ");

/* wait for input, trigger watchdog meanwhile (TSM900 ONLY) */
while (!kbhit()) {

#ifdef TSM 900

#include <t95c061.h>

*P5 |= 0x04;
*P5 &= Oxfb;
#endif

} /* endif */

/* get char and decide what to do */
switch (RdChar()) {
case 'l1l':
WrStr ("START\n") ; /* continue boot process, start mcat */

return;

case '2':
WrStr ("RESET\n") ; /* reset system */
SysReset () ;

case '3':
WrStr ("REMOVE\n") ; /* remove this little INITDEMO */

FLASHWrite (imd, &purge, sizeof (purge)) ;
SysReset () ;

default:
WrStr ("?\n") ; /* UPS! */

} /* endswitch */
} /* endloop */

© 2008 mocom software GmbH & Co KG 143/399

IV. mCAT Kernel Reference mCAT 2.20

9. mCAT Miscellaneous System Functions

I SysReset

Function: Forces a true hardware reset using the watchdog reset mechanism
of the processors.

C-Prototype: void SysReset (void);

Arguments: -/-

Returns: -/-

Supported: mCAT All mCAT Versions
Hardware All

Comments:

I SysScan

Function: Scans the EPROM for initial module descriptors. As it finds one, it
calls the user routine todo and continues. After memory is scanned
it returns the number of found IMDs. Could be used to generate a
list of available modules, for example.

C-Prototype: Short SysScan (void *start, long length, INTEGER(*todo)());

Arguments: start Start address for area to scan
length Length of memory area to scan
todo Pointer to a user written function that will receive a pointer

to the found IMD as a parameter.

Returns: Number of IMDs found

Supported: mCAT All Versions
Hardware All

Comments: If start == NULL, the std. Flash memory is scanned.

144/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

I SysCalcHash

Function: Calculates the hash code of a string (IMD.name)
C-Prototype: UINT16 SysCalcHash (char *string);
Arguments: string Pointer to a string
Returns: hash
Supported: mCAT All versions
Hardware All
Comments:

10. The mCAT Ticker Sevice

10.1. What is the Ticker Good for?

Even if the Ticker is implemented in a separate module outside the kernel, its function is so
basic for mCAT that it is included in the kernel reference.

The ticker is an interrupt service handler for the system timer. The usable resolution is 10ms?
on Toshiba TLCS900 platforms and 1ms on ARM platforms. Within the ticker, two basically

different services are maintained:
- Aninterval time based message responder (classical TICKER)
- A flexible software timer mechanism (ExpressTimer)

The message responder is one of the most frequently used services in mCAT. A task can in-
struct ticker to send a given message either after a given time or at a fixed frequency back to
the task. This will make it easy to handle periodic intervals in a message driven task. There
are two API calls needed to use the message responder service: TALL (previously ALL) and
TAFTER (previously AFTER).

The message responder offers a fastest interval time of 10ms on the Toshiba TLCS900 plat-

form and 1ms on the ARM platform.

10.2. TALL

2 On TLCS900 platforms the ExpressTimer can operate at 5ms interval time in contrast to the 10ms

available with normal Ticker service. On ARM, 1 ms is available with both concepts.

© 2008 mocom software GmbH & Co KG 145/399

IV. mCAT Kernel Reference mCAT 2.20

| TALL

Function:

C-Prototype:

Arguments:

Returns:

Supported:

Comments:

10.3. TAFTER

Request the ticker to send this message back at a given interval

rate. When the task receives a ticker message it can acknowledge

the message using MsgSendReply(msg,Self, ACK). In this case the

message will be scheduled for the next interval. The task can also

not acknowledge the message using

MsgSendReply(msg,Self,NAK), the ticker stops sending messages

in this case.

MSGID *TALL (TickerMsg *msg, UINT32 ms, UNSIGNED priority, IN-

TEGER self);

msg A private TickerMsg structure. This is the message
used to notify your task about a elapsed interval.

ms The interval time

priority The priority that shall be used when sending msg.

self Your own task id.

MSGID Pointer to the message id structure used for ticker
messages.

mCAT All versions

Hardware All

In earlier mCAT system, this function was called ALL. The basic

difference between TALL and ALL is that with TALL the MSGID of

the ticker/all service is returned while with ALL the MSGID was not

returned but stored in a global variable called Tickerld. Both calls

and mechanisms are still available on the TLCS900 platform. On

the ARM platform, only TALL is available.

146/399

© 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

| TAFTER

Function: Request the ticker to send this message back after a given inter-
val. When the task receives a ticker message there is no reason

to acknowlege it.

C-Prototype: MSGID *TAFTER (TickerMsg *msg, UINT32 ms, UNSIGNED priority,
INTEGER self);

Arguments: msg A private TickerMsg structure. This is the message

used to notify your task about a elapsed interval.

ms The interval time
priority The priority that shall be used when sending msg.
self Your own task id.
Returns: MSGID Pointer to the message id structure used for ticker
messages.
Supported: mCAT All versions
Hardware All
Comments: In earlier mCAT system, this function was called AFTER. The ba-

sic difference between TAFTER and AFTER is that with TAFTER
the MSGID of the ticker/all service is returned while with AFTER
the MSGID was not returned but stored in a global variable called
Tickerld. Both calls and mechanisms are still available on the TLC-
S900 platform. On the ARM platform, only TAFTER is available.

10.4. The TickerMsg Structure

Usually the contents of the TickerMsg is of no interest to the user. However, it is not only
documented for completeness. The member tag may be of interest sometimes. Tag is set to
0 with a TALL / TAFTER function is called or when a TickerMsg is acknowledged by the
users task using MsgSendReply(). It is incremented whenever an interval period is complet-
ed. In that case, the message is only send to the usertask, if tag is 0 before its incremented.
That means: If you receive a TickerMsg with tag > 1, than you missed to serve the message

since tag-1 intervals! This can help to analyze and to control the responsiveness of the users

task.

typedef struct {
MSG msg; // mcat message header
INTEGER requester; // caller
INTEGER prio; // prio memory

© 2008 mocom software GmbH & Co KG 147/399

IV. mCAT Kernel Reference mCAT 2.20

UNSIGNED tag; // status marker

UNSIGNED cmd; // timer or ticker

void *internal; // internal use only!

XT xt; // placeholder for XT struct
} TickerMsg;

10.5. What is an ExpressTimer (XT)?

An ExpressTimer is a timer object used to implement fast, interrupt based timer services.
Those timers should only be used carefully. Use as few as possible, best if you can avoid to
use them. The code you can assign to those timers is executed in the timer interrupt handler
context. It slows down the interrupt handling time and therefore the code should be as fast

and straight forward as possible.

On the Toshiba TLCS900 platform the ExpressTimers time intervals can go down to 5ms.

On the ARM platform the interval can go down to 1ms.

10.5.1. The ExpressTimer Handler Function

The prototype for an XT handler function is:

INTEGER SYS FDECL xt handler (XT *self);

The function is called once every time the timers interval elapses. If it returns TRUE, the
timer will be removed and no longer be serviced. To receive upcoming intervals, return
FALSE.

The handler must be fast and lean. A user MUST not call Expresslo functions from within an
XT handler. Even if not forbidden, it is not recommended to send messages from within a
handler. Never call MsgWait, ThreadSleep or ThreadDelay in an XT handler.

So what is an XT good for if all the good things are not allowed? Here is an example from
Expresslo. The Driver for the TSM8ADS8 uses an XT driven state machine to read the (very
slow) AD channels. The values read are stored in RAM for easy access. The state machine
scans all channels by switching the multiplexer and starting the conversion. The state
change is implemented by switching the handler function manually. The schedule will look
like this:

t Action

0 xt _init, set MUXER = 0

10 Xt start conversion

20 xt read, data for channel 0, read values and set muxer to 1
30 Xt start conversion

148/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

t Action
40 xt read, data for channel 1, read values and set muxer to 2
50

And here is the code:

INTEGER xt start conversion (AD8XT *xt)
{
// set next state

xt->xt.code = xt read;

// start conversion
outb (((UINT32) xt->ctrl.hdr.base)+2,0);

return FALSE;

INTEGER xt read (ADSXT *xt)

{
UINTS8 channel;

// set next state
xt->xt.code = xt start conversion;

// get channel and increment
channel = xt->ctrl.chan;
if (channel >= 7) {
xt->ctrl.chan = 0;
} else {
xt->ctrl.chan++;
} /* endif */

// read data for present channel
xt->ctrl.data[channel] = inb ((UINT32)xt->ctrl.hdr.base);

// set muxer to next channel
outb ((UINT32) xt->ctrl.hdr.base, (UINT8) xt->ctrl.chan);

return FALSE;

// USED TO INIT THE STATEMACHINE
INTEGER xt init (AD8SXT *xt)

{
UNSIGNED 1i;

// set basic state
xt->xt.code = xt start conversion;

INTEGER xt read (AD8XT *xt); // READ VALUES AND SET MUXER.
INTEGER xt start conversion (AD8XT *xt); // START CONVERSION AFTER
// MUXER SETTLED.

© 2008 mocom software GmbH & Co KG

149/399

IV. mCAT Kernel Reference mCAT 2.20

// preset data

for (i=0;i<8;i++) {
xt->ctrl.datal[i] = 0;

} /* endfor */

// set muxer to channel 0
xt->ctrl.chan = 0;
outb ((UINT32) xt->ctrl.hdr.base, (UINT8)xt->ctrl.chan);

// iknstall ExpressTimer, using already set handler
XTAdd (&xt->xt, 10, xt->xt.code) ;

return FALSE;

10.5.2. The ExpressTimer Data Structure

Usually there should be no reason to access this structure directly. Use API functions in-
stead. However, there is one exception: Changing the handler manually (member code, see
example in previous chapter). Please also note that the layout and use of the members are
slightly different on the Toshiba TLCS900 platform and the ARM platform.

typedef struct xt {

struct _ xt *next; // next in ticker chain
struct _ xt *prev; // prev in ticker chain
UINT32 schedule; // schedule in ms
UINT32 counter; // down counter

INTEGER cmd; // command code

INTEGER (*code) (); // handler

10.5.3. The XT-API functions

150/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

| XTAddTimer

IV. mCAT Kernel Reference

Function: Adds a timer that is removed unconditionally after the interval time
has elapsed.
C-Prototype: void XTAddTimer (XT *xt, UINT32 time, INTEGER (*code)());
Arguments: xt Pointer to an XT timer structure
time The interval time
code Pointer to handler function
Returns: -/-
Supported: mCAT All versions
Hardware All
Comments:
| XTAdd
Function: Adds a timer that is called periodically whenever the interval time
elapsed and until the handler function returns TRUE.
C-Prototype: void XTAdd (XT *xt, UINT32 time, INTEGER (*code)());
Arguments: xt Pointer to an XT timer structure
time The interval time
code Pointer to handler function
Returns: -/-
Supported: mCAT All versions
Hardware All
Comments:
I XTRemove
Function: Remove an XT from the handling queue unconditionally.
C-Prototype: void XTRemove (XT *xt);
Arguments: xt Pointer to a XT timer structure
Returns: -/-
Supported: mCAT All versions
Hardware All
Comments:

© 2008 mocom software GmbH & Co KG 151/399

IV. mCAT Kernel Reference mCAT 2.20

| XTSet

Function: Set a new interval time and handler function.
C-Prototype: void XTSet(XT *xt, UINT32 time, INTEGER (*code)());
Arguments: xt Pointer to a XT timer structure
Returns: -/-
Supported: mCAT All versions

Hardware All
Comments:

I XTGetResolution

Function: Returns the resolution of the ExpressTimer System. On TLCS900

platforms this will be 5ms, on ARM platforms it will be 1ms.
C-Prototype: UNSIGNED XTGetResolution(void);

Arguments: string Pointer to a string

Returns: hash

Supported: mCAT All versions
Hardware All

Comments:

11. Error Code Cross Reference

Porting mCAT to the ARM platform was an opportunity to change the existing naming con-
ventions to follow more common standards. The table below shows old and new error codes.
Users should use the new style constants only! Please note that the old error codes are still

available for compatibility.

Old Style Error Codes New Style Error Codes Numeric Value
ErrOk SYS_ERR_OK 0
ErrNil SYS_ERR_NIL 1
ErrRun SYS_ERR_RUNNING 2

152/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference
Old Style Error Codes New Style Error Codes Numeric Value

ErrAllinUse SYS_ERR_ALL_IN_USE 3
ErrNoRam SYS_ERR_OUT_OF_MEMORY 4
ErrNoTask SYS_ERR_NO_TASK 5
ErrNotSuspended SYS ERR_NOT_SUSPENDED 6
ErrTrap Not used 7
ErrNoTarget SYS_ERR_NO_TARGET 8
ErrNotSelf Not used