
mCAT 2.20

The mCAT Realtime Operating System

© 2008 mocom software GmbH & CO KG

This document covers

• mCAT Version 2.00-2.20 for TLCS900 Microprocessors.

• mCAT Version 2.20 for ARM Microprocessors.

Document Version 91 - 1. August 2008 Volker Goller

© 2008 mocom software GmbH & Co KG 1/399

-

mCAT 2.20

Content

I. Installing mCAT...21

1. A Note to Experienced mCAT Users...21

2. What You Need..21

3. Install the Software...21

4. Where Can I Find mCAT...21

5. Get Connected..22

6. Try an Example...23

7. DONE! The Things to do Next ..27

II. mCAT 2 Users Manual..28

1. Introduction...28

1.1. A few Tips..28

1.2. What You Need to Know Beyond mCAT...28

2. The Elements of mCAT..29

2.1. Modules...29

2.2. Threads...30

2.3. Tasks...30

2.4. The mCAT Message Passing..31

2.4.1. Bob...31

2.4.2. Alice..32

2.4.3. mCAT Implementation of Clients and Servers ...32

2.4.3.1. MCAT Message ID...32
2.4.3.2. MCAT Messages..33
2.4.3.3. Using Priorities..33
2.4.3.4. Memory Management and Message Passing...33
2.4.3.5. Message Queues and using Multiple Queues..34

2.5. Interrupt Drivers...35

2.6. Shared Libraries..36

2.7. The Ticker Service...36

2/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

2.8. ExpressIOTM...36

2.9. Memory Management..37

2.10. C Programming Style and supplied MACROS...37

2.10.1. PRIVATE, PUBLIC and EXTERN...37

2.10.2. Loop...37

2.10.3. ARRAYSIZE...38

2.10.4. ALIGN...39

3. Putting it all Together...39

3.1. A Simple Example: TICKTEST..39

3.1.1. Includes Needed ..39

3.1.2. TaskInit...39

3.1.3. TaskMain()..40

3.1.4. The Source Code...41

3.1.5. Creating the Makefile..43

3.1.5.1. Selecting a Target Memory Description..44
3.1.5.2. Generating the Initial Module Header (IMD)...45

3.1.6. Compile and Download...47

3.1.7. Execute and Debug..48

3.2. A Example using ExpressIO..48

3.2.1. The Gifts of ExpressIO...48

3.2.2. The Source Code...49

3.2.3. Compile and Run..52

4. What to Read Next?..53

III. SYSMON – A System Monitor...54

1. Introduction...54

2. Line Setup and Terminal Features..54

3. Basic Syntax..55

3.1. SYSMON is Case Sensitive!..55

3.2. Prompt...55

3.3. Numbers..55

3.4. Strings...55

© 2008 mocom software GmbH & Co KG 3/399

mCAT 2.20

4. Command Reference..56

4.1. SYSMON Help...56

4.2. mCAT Base Commands..57

4.3. Memory and I/O Manipulation Commands...66

4.4. Flash Memory Manipulation Functions..69

4.5. EEPROM Manipulation Functions..71

4.6. Program Upload / Download and Start..72

4.7. Optional Commands..73

4.7.1. ExpressIO Specific Commands..73

4.7.1.1. Constant Values Used for xinfo & xcfg Commands..77

4.7.2. Realtime Clock Specific Commands...79

4.7.3. BGMEM Specific Commands...80

4.7.3.1. format {size}..80
4.7.3.2. dir..80
4.7.3.3. attrib <filename> <+r|-r>...80
4.7.3.4. del <filename>..80
4.7.3.5. create <filename><#records><#size><fifo|lifo|ring|random>..............................80

4.7.4. SOCKET / Ethernet Specific Commands..81

4.7.4.1. IP-Information at a Glance: info and ips..81
4.7.4.2. Setup IP-Addresses: setip..81
4.7.4.3. List IP-Status: ips..82
4.7.4.4. Set/Display Ethernet Mode...82
4.7.4.5. Set the TELNETD Password..83

IV. mCAT Kernel Reference...84

1. The mCAT Kernel Technical Reference...84

1.1. Typographic Conventions..84

1.2. A note on Datatypes..84

2. mCAT Tasks..85

2.1. The Concept of Tasks...85

2.2. Relation with other mCAT Concepts..85

2.3. Task Related Data Structures..85

2.3.1. The Data Structures before MCAT 2.20-R00168..86

2.3.2. The Data Structures for non TLCS platforms, MCAT 2.10-R00168 and later.........86

4/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

2.4. Function Reference...87

3. mCAT Threads..92

3.1. The Concept of Threads..92

3.2. Relation with other mCAT Concepts..93

3.3. Thread Related Data Structures..93

3.3.1. MCAT 2.10 and later - TLCS900 Platform..93

3.3.2. mCAT 2.20 – non TLCS platform...94

3.4. Function Reference...95

4. mCAT Message Passing..110

4.1. The Concept of Message Passing...110

4.2. Relation with other mCAT Concepts..110

4.3. The MSGID & MSG Data Structures...111

4.4. Messages: How to?...112

4.5. Flow Charts...112

4.6. Function Reference...116

5. mCAT Interrupts and QuickISR Interrupts...124

5.1. The Concept of Interrupt Drivers...124

5.1.1. The WorkSpace Data Structure..124

5.1.2. WS Data Structure on the TLCS platform...124

5.1.3. WS Data Structure on non TLCS platforms...125

5.1.4. The “service” Function..126

5.1.5. The “wakeup” Function...126

5.1.6. The “go” Function...129

5.1.7. The “notify” Function...129

5.1.8. Important Note..129

5.2. TLCS900 Interrupt Level ...129

5.3. QuickISR...130

5.3.1. QuickISR on Toshiba TLCS900 Platforms (mCAT 2.10)......................................130

5.3.2. QuickISR on ARM7 platforms (mCAT 2.10-R00168)..131

5.4. Relation with other mCAT concepts...131

5.5. Function reference...131

© 2008 mocom software GmbH & Co KG 5/399

mCAT 2.20

6. mCAT Shared Libraries..136

6.1. The Concept of Shared Libraries...136

6.1.1. What is a Shared Library..136

6.1.2. A Shared Library Call..136

6.1.3. Why Should I use “LOCAL” Structure?...136

6.2. Relation with other mCAT Concepts..137

6.3. The Library Descriptor...137

6.4. MIC & LDF-Files..137

6.5. Function Reference...137

7. mCAT Trace & Debug Interface...138

7.1. Function Reference...138

8. mCAT Modules and the IMD (Initial Module Descriptor)..............................140

8.1. The Module / IMD Concept..140

8.2. IMD Reference..140

8.2.1. mCAT 2.10-R00168..141

8.3. INIT-Modules...142

8.3.1. What are INIT-Modules?..142

8.3.2. How to Write an INIT..143

9. mCAT Miscellaneous System Functions...145

10. The mCAT Ticker Sevice..146

10.1. What is the Ticker Good for?...146

10.2. TALL..146

10.3. TAFTER...147

10.4. The TickerMsg Structure...148

10.5. What is an ExpressTimer (XT)?..149

10.5.1. The ExpressTimer Handler Function..149

10.5.2. The ExpressTimer Data Structure..151

10.5.3. The XT-API functions...151

11. Error Code Cross Reference...153

V. mCAT ExpressIOTM...155

6/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

1. Introducing ExpressIOTM..155

1.1. Overview..155

1.2. A Note on Datatypes..155

2. IOOBJECTs ...156

2.1. Mapping Physical Ports to IOOBJECTS..157

2.1.1. ExpressIOTM Physical Drivers...157

2.1.2. Bus, Module, Channel: Referring to the Hardware...157

2.1.3. Classes...158

2.1.4. The IOObjCreate Function..159

2.1.5. The SYSTEM Function ..160

2.2. Vector Access versus Single Channel Access ..160

2.3. The IOOBJECT Methods in Detail...160

2.4. Configuration and Information Retrieval..162

2.5. “Express Programs”...164

2.5.1. The WAIT Interface..164

2.5.2. Message Passing Interface..166

2.5.2.1. Message Passing Interface – Function Reference...168

2.6. WatchDog Handling...170

3. Putting it together: A Quick Start Tutorial...171

4. ExpressIOTM Reference..172

4.1. Using CFG and INFO Method Calls to Configure Devices.......................................172

4.1.1. Basic Info and Configuration Calls..173

4.1.1.1. Hardware Module Identification...173
4.1.1.2. Retrieving Interface Information..173
4.1.1.3. Retrieving Hardware State Information...174
4.1.1.4. Enable Operation..174

4.1.2. Analog I/O...175

4.1.2.1. Preferred Physical Units...175
4.1.2.2. CFG & INFO Calls Special to Analog Modules...175
4.1.2.3. Setting Individual Scaling Factors...177
4.1.2.4. Attaching an Individual Interpolation Table...179

4.1.3. CFG & INFO Calls for Position Encoder Drivers...179

4.1.4. XP BASIC Info and Configuration CALLS...180

© 2008 mocom software GmbH & Co KG 7/399

mCAT 2.20

4.1.4.1. Retrieving the Name of an ExpressProgram...180
4.1.4.2. Setting and Retrieving the Sample Rate...181

4.2. ExpressPrograms for DIGITAL I/O..182

4.2.1. Single Channel XP's...182

4.2.1.1. EDGE DETECTOR...182
4.2.1.2. EVENT COUNTER...183
4.2.1.3. PULSE..183

4.2.2. Vector XP's...189

4.2.2.1. VECCOUNTER...189
4.2.2.2. CAPTURE...189

4.3. Supported Hardware Reference..190

4.3.1. ELZET80 TSM..190

4.3.1.1. TSM-ARMCPU..190
4.3.1.1.1. The Hardware Frequency and Event counters...192
4.3.1.2. TSM-CPUH2...194
4.3.1.2.1. The Hardware Frequency and Event counters...195
4.3.1.3. TSM-CPU900...197
4.3.1.4. Digital I/O boards..197
4.3.1.5. Analog I/O modules..198
4.3.1.5.1. TSM8AD8...198
4.3.1.5.2. TSM8AD12...199
4.3.1.5.3. TSM2DA12...200
4.3.1.5.4. TSM4DA16...200
4.3.1.6. Position Encoders...200
4.3.1.6.1. TSM4INC..200

4.3.2. NET-A7...201

4.3.2.1. NET-A7-4I4R..201

4.3.3. EVA900..201

4.3.4. DINX...203

4.3.5. I2C-BUS..204

4.3.5.1. Limitations ...204
4.3.5.2. I2C-8E8A24..204
4.3.5.3. I2C-16E24...205

4.3.6. BITBAHN..205

5. Library Function Reference...207

6. LINTAB.EXE..209

8/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

VI. mCAT Socket Interface...214

1. Introduction...214

1.1. Features..214

1.2. Difference to UNIX Sockets...214

2. Socket-Interface..215

2.1. The Structure of the mCAT TCP/UDP/IP Protocol Stack...215

2.2. Basic Setup...215

2.2.1. Before the First Steps...215

2.2.2. Ethernet Setup..216

2.2.3. Create a MSGID...216

2.2.4. Create a Socket..217

2.2.5. Resolve Domain Names...218

2.2.6. The Message Loop...218

2.3. Data Exchange..219

2.3.1. Connection Less Protocols (UDP)..219

2.3.1.1. No Connection!...219
2.3.1.2. Be Careful!..219
2.3.1.3. Data Exchange...220
2.3.1.4. Socket or Event: A Note on the Referred Objects..221

2.3.2. Connection Orientated Protocols (TCP)...221

2.3.2.1. Establish a Connection...221
2.3.2.1.1. mCAT Application as a TCP Server..221
2.3.2.1.2. mCAT Application as a TCP Client...222
2.3.2.2. Data Exchange...222
2.3.2.3. Terminating a Connection...222
2.3.2.4. Keep-Alive..223

2.4. Utility Functions...223

3. The Function Reference...224

3.1. Create and Close Sockets...224

3.2. Handling Connections..225

3.3. Data Exchange..229

3.4. Miscellaneous ...231

3.5. The Socket Events..232

© 2008 mocom software GmbH & Co KG 9/399

mCAT 2.20

3.5.1. MS_EVENT_DATA_AVAILABLE..233

3.5.2. MS_EVENT_CONNECT...233

3.5.3. MS_EVENT_DISCONNECT...233

3.6. Socket Error Codes...233

4. Examples...233

4.1. GetTime using UDP...233

4.2. GetTime using TCP...235

4.3. A Simple mCAT-TCP-Server...237

5. Limitations...239

VII. mCAT HTTPD Server..241

1. Introduction...241

1.1. CGI-Handling...241

1.1.1. What is CGI-Handling?...241

1.1.2. Traditional CGI-Handling..241

1.1.3. HTML-Template processing using MSP...242

2. The mCAT-HTTPD-Server setup..242

2.1. TCP/IP configuration...242

2.2. The HT-FileSystem (HTFS)...242

2.3. Basic Authentication..243

2.4. The 'config.db' file..244

2.4.1. Config Parameters..245

2.4.1.1. Port...245
2.4.1.2. Connections..245
2.4.1.3. Root..245
2.4.1.4. Keepalive..245
2.4.1.5. Txbuffersize..246
2.4.1.6. Rxbuffersize..246
2.4.1.7. Mempool ..246
2.4.1.8. User-Names and Passwords..246

3. The mCAT Server Page (MSP) Language..247

3.1. CGI Argument passing..247

3.2. An MSP Statement..248

10/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

3.2.1. Charsets...248

3.2.2. Escape Characters...249

3.2.2.1. General statement escape character..249
3.2.2.2. Macro escape character...249
3.2.2.3. Keyword escape character...249
3.2.2.4. Constant value macros escape character...249

3.2.3. Symbols..250

3.2.4. Namespaces...250

3.2.5. Constant strings..251

3.2.6. Argument Lists..251

3.2.6.1. Basic Concept...251
3.2.6.2. Accessing Global Arguments..254
3.2.6.3. Accessing Local Variables..254

3.2.7. Keywords..254

3.2.7.1. Local / Argv...254
3.2.7.2. Load / Store..255
3.2.7.3. paste / tolower / toupper...255
3.2.7.4. foreach / for / endfor...255
3.2.7.5. if / elseif / else / endif / not..256
3.2.7.6. while / endwhile...257
3.2.7.7. repeat / until..257

3.2.8. Functions and Filters..257

3.3. A few Considerations on HTML...258

3.4. Intrinsic Extensions..258

3.4.1. Intrinsic Namespace 'xio'..258

3.4.2. Intrinsic Namespace 'int'...260

3.4.3. Intrinsic Namespace 'system'...262

3.5. Custom Extensions..262

3.5.1. Internal Representation of Argument Lists..262

3.5.2. The Server Handle..263

3.5.3. Registering a Namespace..263

3.5.4. Adding Macros..263

3.5.4.1. Adding Constant Macros...263
3.5.4.2. Adding Function and Filter Macros...263

3.5.5. Writing Function and/or Filter Macros...264

© 2008 mocom software GmbH & Co KG 11/399

mCAT 2.20

3.5.6. A Customer supplied MSP-Function Example – The complete Source................266

3.5.7. The Argument List Handling API..268

4. The mCAT-HTTPD-Server traditional CGI-Processing.................................268

VIII. MCAT Serial Driver..271

1. Introduction...271

2. Basic Operation..271

2.1. Configuration...271

2.1.1. EEPROM Configuration..271

2.1.2. API based Configuration...273

2.1.3. Configuring »SimpleHandler«...274

2.2. Operation...275

2.2.1. Message Formats...276

2.2.2. Requests/Replys...276

2.2.3. User Supplied Rx Handler..276

2.2.4. Buffer Usage..277

3. Function Reference..277

3.1. Basic Functions...277

3.2. SimpleHandler...279

3.3. Auxilary Functions...282

3.4. Modem Line Handling..282

4. The SimpleIO Functions..283

4.1. SimpleIO Function directed to the default UART (SYSMON)..................................284

4.2. Disabling SYSMON (mCAT2.20)...285

IX. mCAT Date and Time Library...287

1. Introduction...287

1.1. Data Types..287

1.1.1. The MTIME Data Type...287

1.1.2. The SYSTIME Structure...287

1.1.3. MSGID..287

1.1.4. Errors..288

12/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

2. Mtime..288

2.1. Function Reference...288

3. SysTime...290

4. Function Reference..290

5. Schedule..292

5.1. Function Reference...292

X. BgMem: Nonvolatile Data Storage for mCAT..............................295

1. Introduction...295

2. Fundamentals..295

2.1. Organization..295

2.2. File Names..295

2.3. Treatment of BgMem at System Start...296

2.4. Memory Management..296

2.5. File types...296

2.5.1. File Pointers..296

2.5.2. FIFO Files...296

2.5.3. LIFO Files...297

2.5.4. Ring Buffers..297

2.5.5. Random Access Files...297

3. Setup of a BgMem file..298

3.1. Special Operating Considerations...298

3.1.1. Changing Heap and BgMem Sizes...298

3.1.2. Creating and Deleting Files..298

3.1.3. Data Loss From Programming Errors...298

4. Function Reference..298

5. Error Codes...310

XI. mCAT Random Access Memory Management..........................311

1. Introducing mCAT V2 Memory Management...311

1.1. System Memory Heap Management...311

© 2008 mocom software GmbH & Co KG 13/399

mCAT 2.20

1.2. Message Buffer Pool Management..311

1.3. Memory Address and Pointer Calculation..312

2. Datatypes...313

3. The Memory Management API...313

4. The Buffer Pool Manager API..315

XII. mCAT Non-Volatile Memory Management.................................321

1. Introducing Non-Volatile Memory Management..321

1.1. Serial EEPROM API..321

1.2. FLASH Memory API..321

1.3. I2C API..321

2. Accessing EEPROMS...321

2.1. EEPROM Address Scheme...321

2.2. The EEPROM API...323

2.3. The mCAT V2 EEPROM usage...324

3. Accessing Flash Memory...327

3.1. DELPAGE..327

3.2. FLASH Memory API..328

3.3. Supported Flash Memories [12/29/2005]...333

4. I2C-Driver...334

4.1. I2C Addressing..334

4.1.0.1. Extended addressing..334

4.2. I2C-Function Reference...335

XIII. mCAT Tools Documentation..339

1. The Basic Structure of mDE..339

1.1. The Folder Structure..339

1.2. MCATINF.INI...339

1.2.1. Registry Entry before mCAT2.20..339

1.2.2. Registry Entry with mCAT2.20..340

1.2.3. Section [MCAT] in mCATINF.INI..340

14/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

1.2.4. Path macro replacement...342

1.3. MCATPATH...343

2. The Tools...343

2.1. CIMD...343

2.2. IMD ...344

2.3. VMAKE..344

2.3.1. Using Macros..344

2.3.2. Command Line Format...345

2.3.3. DEFAULT Makefile: v4.ini / v103.ini...347

2.3.4. The Basic Structure of an mCAT Makefile..347

2.3.5. Extended Commands...349

2.3.6. MKLNK...351

2.3.7. S3PATCH...352

2.3.8. TAG ...353

2.4. Terminal program..353

2.4.1. Features...354

2.5. Hex File Tools..355

2.5.1. HEX2IMG...355

2.5.2. IMG2HEX...356

2.5.3. HEXMERGE...357

2.6. Little Helpers..357

2.6.1. SETVAR...357

2.6.2. MCATPATH..358

2.7. MIC..358

2.7.1. The MIC Source File ..358

2.7.2. The MIC Command Line Arguments..364

3. Creating own Projects..364

3.1. Creating a Makefile and Executing the Program...365

3.2. Creating a TARGET File..365

XIV. mCAT Release Documentation..366

1. MCAT 2.20..366

© 2008 mocom software GmbH & Co KG 15/399

mCAT 2.20

1.1. Porting Existing Applications...366

1.1.1. Changes Needed..366

1.1.1.1. The Makefile(s)...366
1.1.1.2. The C-Source...366
1.1.1.2.1. MsgUpdate, MsgWait, ThreadSleep, ThreadSleepEx, ThreadDelay..............367
1.1.1.2.2. Includefiles..367

1.1.2. ARM7 Watchpoints...367

1.1.2.1. Miss Aligned Access ..367
1.1.2.2. Structure Member Alignment..368

1.1.3. What if I Want to Maintain my Application with both the 2.10 and the 2.20?........369

1.1.4. If it doesn't Work!..369

2. Hardware Related Information..370

2.1. General Information...370

2.1.1. USRLED and BITBUS activity LED...370

2.1.2. Boot Control..370

2.2. Hardware Reference..371

2.2.1. NET-A7...371

2.2.1.1. CPU + mCAT CORE/HARD Macro...371
2.2.1.2. Memory...371
2.2.1.3. USRLED...371
2.2.1.4. BOOT Control...371

2.2.2. TSMARMCPU...371

2.2.2.1. CPU + mCAT CORE/HARD Macro...371
2.2.2.2. Memory...372
2.2.2.3. USRLED...372
2.2.2.4. BOOT Control...372

2.2.3. TSMCPUH2..372

2.2.3.1. CPU + mCAT CORE/HARD Macro...372
2.2.3.2. Memory...372
2.2.3.3. USRLED...373
2.2.3.4. BOOT Control...374

2.2.4. DINX...374

2.2.4.1. CPU + mCAT CORE/HARD Macro...374
2.2.4.2. Memory...374
2.2.4.3. USRLED...374
2.2.4.4. BOOT Control...374

16/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

2.2.5. NET900H/H+..375

2.2.5.1. CPU + mCAT CORE/HARD macro...375
2.2.5.2. Memory...375
2.2.5.3. USRLED...375
2.2.5.4. BOOT Control...375

2.2.6. ECBCPU900...375

2.2.6.1. CPU + mCAT CORE/HARD Macro...375
2.2.6.2. Memory...376
2.2.6.3. USRLED...376
2.2.6.4. BOOT Control...376

2.2.7. BIT900..376

2.2.7.1. CPU + mCAT CORE/HARD Macro...376
2.2.7.2. Memory...376
2.2.7.3. USRLED...377
2.2.7.4. BOOT Control...377

2.2.8. TSM900..377

2.2.8.1. CPU + mCAT CORE/HARD Macro...377
2.2.8.2. Memory...377
2.2.8.3. USRLED...377
2.2.8.4. BOOT Control...377

2.3. The Valid Interrupt-ID (intid) Values...378

3. BOOTMON SLDR Commands...381

3.1. The Serial Line LoaDeR..381

3.2. Argument Format...382

3.3. SLDR Commands..382

3.4. Downloading Motorola S3-Hexfiles..384

3.5. Replacing mCAT...384

4. Supported Flash Types..386

A. Index..387

© 2008 mocom software GmbH & Co KG 17/399

mCAT 2.20

Tables
Table 1: mCAT 2.20 data types 156

Table 2: EDGE XP Quick Overview 182

Table 3: COUNTER XP Quick Overview 183

Table 4: PULSE XP Quick Overview 183

Table 5: VECCOUNTER XP Quick Overview 189

Table 6: CAPTURE XP Quick Overview 190

Table 7: HTTPD Intrinsic functions: ExpressIO 260

Table 8: HTTPD Intrinsic Functions: INT 261

Table 9: HTTPD Intrinsic Functions: SYS 262

Table 10: EEPROM memory logical addressing scheme 322

Table 11DELPAGE NUMBERS 328

Table 12: mCATINF.INI Environment Variables 341

Table 13: Path Replacement Variables 342

Table 14: vmake Command line arguments 346

Table 15: Passing extra options 347

Table 16: Macros used in a linker control file 352

Table 17: Address macros used in a linker control file 352

Table 18: HEX2IMG Arguments 356

Table 19: IMG2HEX Arguments 356

Table 20: MIC, the ARG argument 361

Table 21: MIC, command line arguments 364

Table 22: NETA7 Memory Layout 371

Table 23: TSMARMCPU Memory Layout 372

Table 24: TSMCPU32H2 Memory Layout 373

Table 25: TSMCPU08H2 Memory Layout 373

Table 26: DINX Memory Layout 374

Table 27: NET900H Memory Layout 375

18/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

Table 28: ECBCPU900 Memory Layout 376

Table 29: BIT900 Memory Layout 376

Table 30: TSM900 Memory Layout 377

Table 31: The Valid Interrupt-ID (intid) Values 381

Table 32: Supported Flash Memories 386

© 2008 mocom software GmbH & Co KG 19/399

mCAT 2.20

Table of Figures

Figure 1: The mCAT Program Shortcuts 22

Figure 2: wLGO, Changing the COMPORT 23

Figure 3: The mCAT command shell 24

Figure 4: A Successful Compilation 25

Figure 5: Loading a SHX-File from the ComamndLline 26

Figure 6: wLGO Download Progress Bar 26

Figure 7: The Output from Our Example 27

Figure 8: mCAT message queue 34

Figure 9: A separate queue for message type 104 35

Figure 10: ThreadSleep 101

Figure 11: ThreadSleepQueued 103

Figure 12: ThreadSignal 105

Figure 13: MsgWait 113

Figure 14: MsgSend 114

Figure 15: Example Hardware TSMCPU900 with TSM-Bus modules attached 157

Figure 16: ExpressPrograms, linked between driver and IOOBJECT 164

Figure 17: Pulse device: functional description 186

Figure 18: Pulse device: functional description - inverted 187

Figure 19: Pulse sequence generator 188

Figure 20: Counter and Multiplexer architecture of TSMCPUH2 193

Figure 21: Counter and Multiplexer architecture of TSMCPUH2 196

Figure 22: The IP/TCP/UDP protocol Stack 215

Figure 23: URL and argument passing 247

Figure 24: Global and macro argument list 252

Figure 25: wLGO, Changing the COMPORT 354

Figure 26: wLGO, Setting the COM parameter 355

20/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 I. Installing mCAT

I. Installing mCAT

1. A Note to Experienced mCAT Users

Experienced mCAT 2.xx users should read the mCAT 2.20 release notes first!

2. What You Need

1. A MCAT 2.20 Installation CD

2. A RS232 Cable

3. A piece of hardware that has mCAT 2.20 installed

4. A PC running Microsoft® Windows® 2000 or Windows® XP.

3. Install the Software

1. Insert the MCAT Installation CD into your CD-ROM drive

2. Start setup.exe found on the CD.

3. Follow the instructions. Your serial number can be found on a sheet that comes with the

CD.

4. If the installation of mCAT is finished, you are asked to install additional products. The

least you need is the GNUDE GCC compiler. You may install ADOBE® Acrobat Reader®

to view the documentation online. We also recommend to install the UltraEdit® Program-

mers Editor. Be aware that UltraEdit is shareware and that the UltraEdit to come with

mCAT is a 30 days trial version only. If you like UltraEdit register it at www.ultraedit.com.

5. If you press finish, the installation programs of the individual software packages you se-

lected will be started. Please follow the instructions.

4. Where Can I Find mCAT

Setup.exe creates a shortcut folder named “mCAT2.20” (if you did not change the name) in

your computers Start Menu folder. There you find a link to the this documentation in PDF for-

mat, a link to a index that will guide you to the example code, a shortcut to start an mCAT

command shell and a shortcut to the wLGO Terminal Program you need to communicate

with the mCAT hardware. See the figure below.

© 2008 mocom software GmbH & Co KG 21/399

I. Installing mCAT mCAT 2.20

5. Get Connected

Connect the mCAT 2.20 Hardware (TSMARMCPU) with your PC using the RS232 cable.

Prefered and pre-installed comport to use is COM1. On the mCAT hardware, use SER0.

Start the wLgo Terminal-program from the “mCAT 2.20” Start Menu folder. If your mCAT

hardware is powered up and you are connected to the correct serial port you will see

mCAT's start up messages and finally you will get a SYSMON command prompt.

If you have to connect to another comport, you can change the port to use in the WLGO

Menu “Einstellungen->Schnittstelle”.

22/399 © 2008 mocom software GmbH & Co KG

Figure 1: The mCAT Program Shortcuts

mCAT 2.20 I. Installing mCAT

If you have no success, check the WLGO setup. We need 19200-8N1, no handshake to

communicate with mCAT. You will find the setup at “Einstellungen->Schnittstelle->Konfigura-

tion” (the Button shown in the figure above).

6. Try an Example

Open the mCAT command shell and change to directory sysinfo.

SysInfo is a limited example and for now it is not important what its function is.

© 2008 mocom software GmbH & Co KG 23/399

Figure 2: wLGO, Changing the COMPORT

I. Installing mCAT mCAT 2.20

Enter vmake -r. The system shall compile the sysinfo example. On success, the screen will

look like this:

24/399 © 2008 mocom software GmbH & Co KG

Figure 3: The mCAT command shell

mCAT 2.20 I. Installing mCAT

Now, use wLGO to download the resulting SHX-File to the mCAT 2.20 hardware. There are

two options with wLGO, you can use F3 function key to open a file dialogue to locate and

open sysinfo.shx or – sometimes more suitable – pass the shx file as a command line argu-

ment. Please note that wLGO does not accept a command line argument if it is already ac-

tive. In this case, terminate wLGO.

© 2008 mocom software GmbH & Co KG 25/399

Figure 4: A Successful Compilation

I. Installing mCAT mCAT 2.20

WLGO will start to download the shx and when this is done, the SYSMON command prompt

is available again:

26/399 © 2008 mocom software GmbH & Co KG

Figure 5: Loading a SHX-File from the ComamndLline

Figure 6: wLGO Download Progress Bar

mCAT 2.20 I. Installing mCAT

SysInit is (like many other examples) compiled to be located in the user RAM (0x402000)

Now, we can start our little example:

2+> init 402000

The example prints the mCAT version and serial numbers as well as a build or the date of

build. Those values will be different at your system!

7. DONE! The Things to do Next ...

If your installation works, you should start reading the mCAT UsersGuide, study the exam-

ples and consider the release notes.

© 2008 mocom software GmbH & Co KG 27/399

Figure 7: The Output from Our Example

II. mCAT 2 Users Manual mCAT 2.20

II. mCAT 2 Users Manual

1. Introduction

MCAT is a modern real-time operating system designed to fill the gap between operating-

system-less designs (os-less) and full size operating systems. It has a low to moderate

memory footprint and allows fast task switching.

MCAT is a multi-tasking operating system, that relies on message passing to implement in-

ter-task communication as well as synchronization. In this Users Manual, we will give an in-

troduction to multi-tasking and message passing as well as to other major components and

concepts of the mCAT system.

1.1. A few Tips

There are some simple rules that may help to get your fingers around mCAT and that may

also help to successfully use mCAT.

– Don't try to get around the mCAT concepts. If you try to design your own components or

applications using tricks and bits outside the mCAT concept, you will get unreliable and

faulty results. That will also make it very difficult to support you.

– Do not take something for granted! If you use a new feature, read the manual before you

start coding.

– If you have to implement complex calculation or algorithms, place them into a separate

file and develop and debug them using a popular C-Compiler on your PC before you inte-

grate it into mCAT. That can help to minimize in-system debugging and can speed up de-

velopment time.

1.2. What You Need to Know Beyond mCAT

ANSI-C is the language used to develop mCAT components and applications. If you are new

to C, you can learn it along with mCAT. However, our manuals do not give an introduction to

C. There are many good books about C out on the market and you may even find some use-

ful tutorials for free on the Internet (One example available at the time this manual was writ-

ten: http://www.strath.ac.uk/IT/Docs/Ccourse/ccourse.html).

The mCAT manuals also do not give an introduction to basic software design knowledge, for

example a “how to implement serial communication well and reliable”.

28/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

Finally, you need some time to read the mCAT manuals, investigate the examples and to get

familiar with the mCAT concepts. No investment, no return!

2. The Elements of mCAT

And here they are, the elements of mCAT, in order of appearance:

– mCAT Modules – the basic assemblies

– mCAT Threads – the basic executable program units

– mCAT Tasks – the application process

– mCAT Message Passing – connects tasks with tasks and interrupt drivers with tasks.

– mCAT Interrupt Driver – control and handle hardware interrupts

– mCAT Shared Libraries – offer interfaces to shared function libraries

– mCAT Ticker Service – an universal timer service

– mCAT ExpressIOTM – an abstract process i/o layer

2.1. Modules

A module is any piece of binary data, usually – but not necessarily – executable program

code. It can be compiled independently from other modules in a system. It is prefixed by a

data structure called the IMD (Initial Module Descriptor). The most important element of this

structure is a pointer to the executable function TaskInit.

The mCAT operating system scans the entire FLASH memory of a system at startup. For

each valid module found, it invokes the modules TaskInit() function call. The name may con-

fuse a bit, but TaskInit is not only the place to create and init a task but also to create and init

an interrupt driver or any other kind of module. The name TaskInit is just used for historical

reasons. ModuleInit() might have been a better choice. Anyway, TaskInit is a user provided

function. We learn more about this function later.

Please note that TaskInit usually is not directly inserted into the IMD when a program is

written in C. IMD holds a pointer to the c-compiler startup routine (runtime memory initial-

ization, __cstart()) that will call TaskInit after it has completed its duties.

The IMD holds a lot of information, including:

• Module name

© 2008 mocom software GmbH & Co KG 29/399

II. mCAT 2 Users Manual mCAT 2.20

• Module version

• Module build time (binary, UNIX time format)

• Module memory requirements (mCAT 2.10R00185 and higher)

The name and version is printed to the system console at startup.

Please note that mCAT itself consists of a set of independent modules.

2.2. Threads

A thread is an independent program that can be executed semi-concurrently with other

threads. With the current version of mCAT, the thread with the highest priority runs until it

enters either a wait condition (via functions MsgWait(), ThreadSleep() or ThreadSleep-

Queued() or ThreadDelay()) or another higher priorized thread becomes ready to run (by

leaving a wait condition). It is important to know the concept of threads, even if until you

have a very advanced application you may find no need to deal with threads directly. You will

find all details about threads in the mCAT Kernel Reference.

2.3. Tasks

Threads are restricted to exist within a task only. A Task is an mCAT module that is address-

able by the mCAT Message Passing (see below) and that hosts at least one thread (the

main thread). Tasks are the most important concept to implement an application using

mCAT.

Tasks are globally addressable using their task id or task number (two names for the same

thing). It is an integer number in the range of 0..MAX_TASKS (MAX_TASKS is 16 while this

documentation is written). An mCAT task also has a name (up to 16-Char). A task is the

frame for an application program.

Writing an mCAT application means to write a task in 98% of all cases.

That is all you need to know about tasks up to now. We will come back to tasks and applica-

tion design in chapter I.3. Putting it all Together.

30/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

2.4. The mCAT Message Passing

Message Passing is a technique to implement interprocess communication (in mCAT: inter-

task communication). A message can be assumed as a data structure holding user informa-

tion that is passed from one task to another. To be useful, a message must have properties

to:

– Identify the sender

– Identify the receiver

– identify the type of message (and thereby the type of user data included)

Optionally it should also carry the length of the message and an error indicator.

A simple real-world example may be helpful at this point:

Lets assume we have 2 persons ('tasks'): Alice and Bob. Bob works in a store and Alice

needs something from Bobs store – lets say real Java beans.

1. Alice takes a long deep look into the yellow pages. She picks Bobs store.

2. Alice dials the number of Bobs store.

3. Bob answers the phone. He identifies himself. “Hi, here is Bob!”

4. Alice also identifies herself: “Hi, my name is Alcie. I like to order 1kg of your best Java

beans! My address is BeachHouse, Halfmoon Bay”.

5. Bob Acknowledes the order “Well, 1kg of our finest Java! To Alice at Halfmoon Bay.

Thank you for the order!”.

6. Now they can quit the phone conversation. The Java will be delivered the other day.

So what can we say about Alice and Bob and their conversation?

2.4.1. Bob

Lets start with Bob. We can say about Bob that he:

– Offers a service (Bobs store, selling Java).

– He has a phone number and this number is published in a common directory service (Yel-

low pages). We can say Bob is addressable.

– His major job is waiting for incoming calls (orders).

© 2008 mocom software GmbH & Co KG 31/399

II. mCAT 2 Users Manual mCAT 2.20

All these will qualify Bob to be a server. A server offers a service, has that service listed in a

publicly available directory service and lingers most of his time waiting for incoming orders.

2.4.2. Alice

What can we say about Alice?

– Alice needs a specific service (like many others too!)

– Alice uses a publicly available directory service to find a provider who is able to deliver the

service Alice needs.

– Alice calls Bob to send him her order. We can say: She sends him a message!

– Alice finally receives Bobs service.

If Bob is a server in our model, Alice is the client. She needs Bobs service. She may not

know Bob or Bobs phone number before she needs his service. The contact is made via a

publicly available directory service.

2.4.3. mCAT Implementation of Clients and Servers

If we transfer the Alice and Bob example to mCAT, we have to design a server task and (at

least) one client task. With mCAT, a message from the client to the server (the order in or

Alice/Bob example) is called a request. The answer Bob upon an order is called a reply.

Note: The structure and contents of a message is defined by the designer of the spe-
cific service within the server.

2.4.3.1. MCAT Message ID

Every mCAT message has a specific message id. This type code, a 32-Bit integer, is created

by mCAT at runtime and registered in a database. The key to that database is a readable

string assigned by the designer of the service. A server uses the function MsgIdCreate()to

register a message id (and doing so a service offered by the server) and a client uses Ms-

gIdQuery() to search the database for a specific message id (a service). The information

stored in the message id database includes all addressing and routing information the client

needs to send a request to the server.

32/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

2.4.3.2. MCAT Messages

An mCAT message is a data structure starting with a common entry called the message

header. Its data type is MSG. This structure is 22-Bytes long and holds all information need-

ed to transport the message from source to destination. Beside other data values it includes:

– The message id value (in the field type)

– The message source task (in the field src, needed for to be able to send back a request

to its requester)

– An error indicator

– Priority fields

2.4.3.3. Using Priorities

In contrast to our Alice & Bob example, mCAT is capable of assigning priorities to its mes-

sages. With a request, you can not only assign the priority the request should have but also

the priority the reply should use on its way back to the client.

An mCAT task/thread receiving a message will inherit the priority of an incoming message

and execute the desired service at this priority.

Note:

For many cases, the MsgUpdate() function simplifies priority handling for clients by implic-

itly inserting the clients current priority into the priority fields within the request. However,

MsgUpdate() is not always usable. Refer to the mCAT Kernel Reference for details on

priorities and the MsgUpdate() function.

2.4.3.4. Memory Management and Message Passing

mCAT uses a "store and forward message passing" implementation. As a consequence,

only a pointer to the message is actually passed from one task to another. No data is copied.

The message is still a part of the senders dataspace.

A user must take this into account. If a statically allocated message is send to another task,

the user MUST take care that this message is not modified by the sender until the sender re-

ceives the reply to this message. Again, the use of MsgUpdate() can make things simpler,

because this function sends a request and waits until the related reply is received without

consuming cpu time. This implies that there can be no memory usage conflicts using Ms-

© 2008 mocom software GmbH & Co KG 33/399

II. mCAT 2 Users Manual mCAT 2.20

gUpdate(). If MsgUpdate() is not used to implement the clients message interface it may

make sense to use a message pool. A message pool is a construct to allocate fixed-length

message buffers from a limited pool.

2.4.3.5. Message Queues and using Multiple Queues

An mCAT task or interrupt driver queues all incoming messages until they are read by the

task. A task is usually designed around a central infinite loop, the message loop. First state-

ment in that loop is a MsgWait(). This function will try to retrieve a message from the mes-

sage queue.

If at least one message is waiting in the queue, it is fetched and the current thread is

switched to the messages priority (exception: If the task runs in fixed priority mode). If no

message is pending, the task will terminate execution and sleep until either an optional time-

34/399 © 2008 mocom software GmbH & Co KG

Figure 8: mCAT message queue

mCAT 2.20 II. mCAT 2 Users Manual

out occurs or a message is queued. Please note that the messages are queued sorted by

time and priority! The message with the highest priority is retrieved first. Messages with the

same priority are sorted by time of arrival, oldest first.

When it comes to practical application design, there can be a situation, when specific types

of messages need to be handled in specific states of the application. Receiving them in the

main loop, the programmer will have the need to store those messages somewhere until he

needs them. An easier and more elegant way to handle such situations is to create an indi-

vidual queue for those message types. All messages whose message types are not as-

signed to a specific queue are stored in the default queue.

2.5. Interrupt Drivers

MCAT supports a straight Interrupt Driver model. An interrupt module can handle interrupts

natively and send mCAT messages in response to those events. They can also receive mes-

sages form both, tasks and other interrupt drivers. Writing interrupt drivers is a very advance

project that is in good hands of an experienced mCAT user. The details about writing inter-

rupt drivers can be found in the mCAT Kernel Reference.

© 2008 mocom software GmbH & Co KG 35/399

Figure 9: A separate queue for message type 104

II. mCAT 2 Users Manual mCAT 2.20

2.6. Shared Libraries

Shared Libraries are also designed to offer different clients a service. In contrast to a server

implemented in a concurrent task and interfaced by message passing, a shared library offers

synchronous services only. That implies that they – usually - can not manage shared re-

sources and handle multi-tasking (as usual there are exceptions, but only a few and they are

hidden very deep in the system, like the Memory Management API).

However, a shared library can save resources. If there are functions and constant data used

by several tasks, it is much more efficient to move this code into a shared library than to link

the code with every task separately. So it will consume the memory it needs only once. If it

needs to handle resource allocation, it may interact with a message based server by using

the MsgUpdate() function.

Please note that the mCAT-Kernel itself is a shared library.

2.7. The Ticker Service

In most applications its necessary to do things in a fixed cycle or related to some timing con-

strains. Maintaining timeout control, regularly checking of a device state or sampling data –

you need a timebase to implement those applications.

If an mCAT task needs such a service it can rely on the Ticker. Using a simple function

TALL() the task requests the Ticker to periodically send a message to the task at a given fre-

quency. Because the ticker message is a standard mCAT message it is easy to handle. Its

just another if-statement in the central message loop of an application. Our first and widely

referenced example “TickTest”. A Ticker-Example is for a realtime operating system what

“hello world” is for desktop programming systems.

2.8. ExpressIOTM

ExpressIOTM is an process I/O abstraction layer. It provides fast and lean methods to access

process I/O like event counters, position encoders and analog or digital I/O. ExpressIOTM ap-

plications are portable if they are moved to different hardware – as long as the new hard-

ware also supports ExpressIOTM. In chapter “The Gifts of ExpressIO” we will present a sim-

ple ExpressIOTM example. More details about ExpressIOTM can be found in the documenta-

tion.

36/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

2.9. Memory Management

With MCAT we use a very simple allocate-and-never-free approach to memory manage-

ment. This is driven by the believe that an embedded system should be designed in a way

that dynamic memory allocation should be restricted to system startup configuration if possi-

ble.

For highly dynamic memory management requirements with limited flexibility, like message

buffer management, we offer The Message Pool API. A message pool is a fixed size memo-

ry area that is splited into a fixed number of buffers of a unique length. Allocation and Deallo-

cation of a buffer from a Message Pool is very fast.

2.10. C Programming Style and supplied MACROS

Working with our examples you will find that we predefined a few macros that are not mCAT

specific and not common for C. Here is the place to introduce them:

2.10.1. PRIVATE, PUBLIC and EXTERN

If not labeled with the static attribute, all function names and global variables of a c-source

file are exported and are visible to other files when the linker is finally putting it all together.

That is not a very helpful feature of C and we believe it is a good idea to explicitly label ALL

functions and global variables using our macros PUBLIC (=> export name) and PRIVATE

(=> do NOT export name). I do not know who did this first but I picked the use of PRIVATE

and PUBLIC from operating system designer Andrew Tanenbaum who used them in his

MINIX operating system.

We also add the macro EXTERN It fixed some compiler limitations of an early Toshiba C-

compiler. It is used in conjunction with PUBLIC. One file declares a variable or function pub-

lic, another declares the same as EXTERN.

Please note that PUBLIC and PRIVATE should NEVER be used to label local vari-
ables (variables on stack). Local variables are always private to the scope of the
current function.

2.10.2. Loop

With mCAT, most tasks will be designed around a central infinite loop that handles incoming

messages. The C programming language does not support an infinite loop by a statement.

Usually programmers use something like
while (1) {

© 2008 mocom software GmbH & Co KG 37/399

II. mCAT 2 Users Manual mCAT 2.20

// infinite loop
}

to implement infinite loops. This reads not very intuitive. So we wrap this statement using a

macro:
#define loop while(TRUE)

Loop can be used as for() or while() loops:
loop {

msg = MsgWait(0,0);
if (msg->type == ticker->id) {

....
} /* endloop */

2.10.3. ARRAYSIZE

The size of an static array is hard to determine. The sizeof operator will return the size in

bytes. This will not help if you need the size in terms of items. A simple example will show up

the problem:
int my_array[7];
int my_function_sum_of_array()
{

int sum,i;
for (sum=0,i=0;i<7;i++) {

sum += my_array[i];
}
return sum;

}

The function my_function_sum_of_array() will add up all items in my_array[]. So far it works.

However, if I change the array size, I have to change the function as well. One common so-

lution to this problem is the use of static macros:
#define MY_ARRAY_SIZE 7
int my_array[MY_ARRAY_SIZE];
int my_function_sum_of_array()
{

int sum,i;
for (sum=0,i=0;i<MY_ARRAY_SIZE;i++) {

sum += my_array[i];
}
return sum;

}

This is much better. Changing the macro MY_ARRAY_SIZE will be sufficient. But there is an

even smarter solution available:
int my_array[7];
int my_function_sum_of_array()

38/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

{
int sum,i;
for (sum=0,i=0;i<ARRAYSIZE(my_array);i++) {

sum += my_array[i];
}
return sum;

}

The macro ARRAYSIZE() will calculate the size of an array in items in a reliable and portable

way. And the calculation will be done at compile time, so there is no penalty to pay for using

it. And here is the implementation of ARRAYSIZE:
#define ARRAYSIZE(x) (sizeof(x)/sizeof(x[0]))

2.10.4. ALIGN

ALIGN(val,al) returns a value that is multiple of al and not smaller than input value val. The

macro works with any value of al, even if alignments to binary boundaries (2,4,8,..) are the

most common usage of alignment operations. Modern compilers will detect binary boundary

operation and optimize the code as needed.
#define ALIGN(val,al) ((((val) + ((al)-1)) / (al)) * (al))

3. Putting it all Together

3.1. A Simple Example: TICKTEST

To get a first idea about how the actual code looks like, here's an example of a simple pro-

gram that prints out a counter every 1/10 seconds to the terminal serial line. To accomplish

this, it will request the ticker service to send a message every 1/10 second to the task.

3.1.1. Includes Needed

Program text starts including the necessary header files. MCAT.H is the main include file, it-

self including headers like IMD.H, MSG.H etc., where the basic data structures of mCAT are

defined. TICKER.H provides the ticker message structure and the function definitions for

TALL and TAFTER, while SIMPLEIO.H defines basic serial line i/o-functions. Since mCAT

210-R160 and later SIMPELIO provides std. C output functions printf() and fprintf() beside

some basic functions like WrStr() used traditionally with mCAT. The only limitation to

printf/fprintf implementation in SIMPELIO is that float point types (double and float) are not

supported. To output those, use sprintf to format a buffer and send the buffer to the serial

line using printf.

© 2008 mocom software GmbH & Co KG 39/399

II. mCAT 2 Users Manual mCAT 2.20

3.1.2. TaskInit

The INIT part of the task - TaskInit() - follows. Because there is no need for specific initializa-

tion, we just create and start the main task using TaskStartup().

TaskStartup creates a task, assigns a task number (returned into Self) and activates it im-

mediately at the priority given in the IMD. It will retain this priority until it gets its first mes-

sage, whereafter it is put to the priority of the message. The last parameter of TaskStartup()

is set to 0 as we don't want more than the default message queue.

The macros Protect() and UnProtect() are wrappers to ThreadProtect()/ThreadUnProtect().

The code between them can not be interrupted by a task switch. They are used to implement

critical sections. It is recommended to handle TaskInit() as a critical section, because if the

code is executed on behalf of SYSMON's init command for test purposes the behavior is un-

predictable if it is not protected. If the task is moved to FLASH and TaskInit() is executed by

the mCAT bootloader this protection is not needed – but it will not harm either. So its better

to always handle this as a critical section.

3.1.3. TaskMain()

TaskMain() is the main part of the task, it would be main() in a standard C environment. First

local variables are declared. Our variable pock is going to be the counter variable that we will

print out as the number of messages received.

The TALL-function is parameterized to use the message tick to be sent all 100 milliseconds

at a priority of 200 to my task.

The program continues as an endless loop. At the beginning of the loop, you notice the

probably most often used mCAT call: MsgWait(queue_handle,timeout).

MsgWait tells mCAT to wait for an incoming message at queue 0 in our example, which is

the default queue that gets all messages that don't have a special queue opened. A timeout

of SYS_WAIT_INIFINITE indicates that it will wait forever if no message arrives, a long value

greater zero would define a timeout in milliseconds. The function would return a NULL point-

er in case of a timeout.

When MsgWait returns a message, the program has to check its type. As we are waiting for

a message from ticker, the type field in the msg data structure (msg->type) must contain the

ID of a TickerMsg. If this is correct, the ticker has to be notified that the message arrived ok.

mCAT provides the function MsgSendReply for this. It returns the message with a hand-

shake value of ACK or NAK.

40/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

If the arriving message was a message from ticker, the MsgSendReply is returned with ac-

knowledge, pock is incremented and printed to the terminal serial line. If the message is un-

known, it will be refused with the reply value NAK. After this, a new MsgWait is issued in the

loop.

This is a complete task under mCAT and may serve to extend it to an analog input scanning

program or a regulator task for your own application.

3.1.4. The Source Code

/*
 * ticktest
 *
 * (c) 1999-2004 mocom software GmbH & Co KG
 *
 * File: ticktest.c
 *
 * History:
 *
 * date version author comment
 * --
 * 20.09.1995 V1.00 VG created
 * 13.04.1999 V1.01 VG updated, new code to find sysmon
 * 02.06.2004 V1.10 VG using SysmonEnable to deactivate/reactivate
 * SYSMON. Updated comments.
 * --
 */
#define __MOD_TICKTEST

/*--*/
/* THIS FILE CAN BE COMPILED WITH TOSHIBA C, Metaware HighC and GCC for ARM */
/*--*/

#include <mcat.h> /* mCAT functions and datatypes */
#include <ticker.h> /* ticker msg and functions */
#include <simpleio.h> /* Simple, non standard io functions */
#include <ansi.h> /* ANSI-Terminal control */
#include <string.h> /* std. c striung functions */

PUBLIC INTEGER Self;

/*--*/
/* INIT TASK */
/*--*/

void TaskInit (IMD *imd)
{
 INT16 error; /* you may or may not check for errors.
 There must be a fundamental problem if
 the task will not start */

© 2008 mocom software GmbH & Co KG 41/399

II. mCAT 2 Users Manual mCAT 2.20

 Protect(); /* This is necessary to avoid problems while
 init the task from within the monitor */
 Self = TaskStartup(imd,FromTop,&error,0);
 /* imd = pointer to own imd
 FromTop = allocate task number starting from
 the highest available down to 0
 error = pointer to a error variable
 0 = reserve no space for extra
 queues. The default queue is
 not affected by this statement. */
 UnProtect(); /* re-allow task switching */
}

/*--*/
/* DECLARE YOUR VARIABLES HERE */
/* The macro PRIVATE makes the symbols local to this file. */
/*--*/

PRIVATE TickerMsg tick; /* used to request service by the ticker */

void InitScreen()
{
 // Disable sysmon using 'SysmonEnable(FALSE)'
 if (!SysmonEnable(FALSE)) {
 TraceWriteLog("CAN'T DISABLE SYSMON - EXIT\n");
 TaskDelete(Self);
 } /* endif */

 // clear screen and print banner
 clrscr(); /* CLEAR SCREEN */
 gotoxy(2,3); /* SET CURSOR */

 printf(" *** TICKTEST 1.0 ***\n\n");
 /* hello */
 gotoxy(2,18); /* STATIC TEXT */
 printf("Press any key to exit ...");
 gotoxy(13,10);
 printf("1/10 sec since start.");
}

void TaskMain ()
{
 lword pock; /* a "tick counter" */
 MSGID *TickerId; /* ID of tickermsg */
 MSG *msg; /* a pointer to handle incoming messages */

 pock = 0l; /* clear tick counter */

 TickerId = TALL(&tick,100l,200,Self);
 /* request the ticker to send "tick"
 all 1000ms (1sec) to ourself (Self)
 using a priority of 200 */
 if (TickerId == NULL) {

42/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

 TraceWriteLog("TALL failed\n");
 TaskDelete(Self);
 } /* endif */

 // setup screen
 InitScreen();

 /*--*/
 /* Ensure that you NEVER return from this TaskMain function! */
 /* The only way to exit is to call "TaskDelete(Self);" */
 /*--*/

 /* loop is a c-macro "#define loop while(1)". It is defined in
 "vtype.h", included by "mcat.h" */

 loop {
 /* using SYS_WAIT_INFINITE is portable between ARM & TLCS900.
 On TLCS900 platform 0 is used to signal no wait, on the
 ARM platform we use -1. */
 msg = MsgWait(0,SYS_WAIT_INFINITE); /* wait for a msg. Timeout is NULL,
 use default queue "0" */

 /* we got a msg. Check if it was a ticker msg */
 if (msg && msg->type == TickerId->id) {
 /*--------------------*/
 /* IT'S A TICKER MSG */
 /*--------------------*/
 MsgSendReply(&tick,Self,ACK); /* Acknowledge FIRST! */
 gotoxy(8,10);
 printf("%d",++pock);
 if (kbhit() || pock > 150) {
 RdChar();
 clrscr();
 // reenable SYSMON and kill ourself.
 if (!SysmonEnable(TRUE)) {
 SysReset();
 } /* endif */
 TaskDelete(Self);
 } /* endif */
 } else if (msg) {
 /*--------------------*/
 /* UNKNOWN MSG! */
 /*--------------------*/
 MsgSendReply(msg,Self,NAK);
 puts(" *** FAIL ***\n");
 } /* endif */
 } /* endloop */
}

3.1.5. Creating the Makefile

A makefile is used to control the compilation process.

© 2008 mocom software GmbH & Co KG 43/399

II. mCAT 2 Users Manual mCAT 2.20

#
Project: TICKTEST
Author : VG
Date : 02.06.2004
#
PROJECT = TICKTEST

memory spec
TARGET = std_ram

optional c-compiler options
CMD=-D$(HARD)

list of object files. File holding the IMD must be the first in the list.
OBJFILES = imd.$(REL) $(PROJECT).$(REL)

list of include files
INCFILES =

build rule, same with all projects
$(PROJECT).shx: $(OBJFILES)

$(MKLNK) $(TARGET) $(PROJECT) $(OBJFILES)
 $(LD) $(PROJECT).LNK -o$(PROJECT).abs
 $(CONVERT) $(PROJECT).abs $(OF) $(PROJECT).shx

$(S3PATCH) -l=$(PROJECT).map $(PROJECT).shx

individual dependencies
$(PROJECT).$(REL): $(PROJECT).c $(INCFILES)

build rule for 'imd.c', rebuild when makefile was changed.
cmd {-options} <name> <file.c>
imd.c: makefile

$(CIMD) -public -auto -init=__cstart -version=1.10 mCAT/TickerTest imd.c

3.1.5.1. Selecting a Target Memory Description

One important question to answer is: Where to place my code & data? MCAT does not man-

age this on its own.

For non-complex projects, this is easy to answer. MCAT reserves an area in RAM and

FLASH for small projects. Using RAM, starting at 0x402000, it is easy to download and test

modules. No FLASH specific handling (deleting) must be considered. Moving the project to

FLASH gives it the ability to auto-start after reset.

In more complex projects, each module may reside in a different FLASH page. Each module

needs separate areas in the RAM space to store variables.

44/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

MCAT use so-called TARGET files to control the address settings. A sample TARGET file

looks like:
[ADDR]

ROMSTART=0x800000
RAMSTART=0x412000

ROMLENGTH=0x10000
RAMLENGTH=0x10000

Please note that ROMSTART/ROMLENGTH are used to define an area to store constant

data (program code and constant values). RAMSTART and RAMLENGTH are used to define

an area to store dynamic data (variables). The names do not determine that the ROMXXXX

section MUST be located in FLASH memory! For testing, this can be located in RAM as well:
[ADDR]

ROMSTART=0x402000
RAMSTART=0x412000

ROMLENGTH=0x10000
RAMLENGTH=0x10000

The memory definition is set in the makefile using the macro TARGET. The value set is the

TARGET files name without extension (extension must be .trg). The above examples are

the standard TARGET files std_ram & std_rom, used to cover simple projects and provided

along with mCAT. All examples provided use one or both of these TARGET files:
memory spec
TARGET = std_ram

3.1.5.2. Generating the Initial Module Header (IMD)

The Initial Module Header is generated by a tool called CIMD.EXE1. This tool sets up all

fields of the structure and calculates a proper hash code. The hash code is calculated from

the modules name. Together with the pattern AA 55 (a 16-bit integer, 0x55aa, little endian)

the hash code is used to verify the validity of an IMD.

The IMD is written into a separated file. This file should not be edited manually! It looks like

this:
// Generated by CIMD.EXE
// Do not edit manually

#include <mcat.h>

1 With previous versions of mCAT a tool called IMD.EXE was used to generate IMD's. This tool is ob-
solete, do not use it anymore

© 2008 mocom software GmbH & Co KG 45/399

II. mCAT 2 Users Manual mCAT 2.20

INTEGER TaskMain (void);
INTEGER __cstart (IMD *imd);

#define VERSION "1.10"
#define NAME "mCAT/TickerTest"

#define PATTERN 0x55aa
#define ID 0xff
#define PRIORITY 128
#define MAINCALL TaskMain
#define INITCALL __cstart
#define IMDNAME taskimd
#define MODE MODE_TASK
#define HEAP 0
#define CHECKSUM 29391
#define SCOPE PUBLIC
#define STACK 1024 // 0x400
#define BUILD 0x112d2d11

SCOPE const IMD IMDNAME = {
 PATTERN,INITCALL,MAINCALL,STACK,
 HEAP,BUILD,PRIORITY,MODE,
 ID,VERSION,NAME,CHECKSUM
};

The advantage of generating a C-Source file is that this file is compatible across the mCAT

platforms (ARM,TLCS900). Please note that almost any option in the header can be

changed by means of CIMD.EXE arguments:
 *** CIMD 1.01 ***
cimd {options} <name> <imdfile.c>

options are:
 -public : imd structure is public (default private)
 -auto : autostart option, default is 'no autostart'
 -interrupt : setup imd mode MODE_INTERRUPT (default=MODE_TASK)
 -initmodule : setup imd mode MODE_INIT (default=MODE_TASK)
 -version=#.## : set initial version, default=1.00
 -priority=### : set initial priority to ### (0 < priority <255), default=128
 -stack=#### : set stack size, default is 1024
 -init=<name> : name of the init call, default is __cstart
 -main=<name> : name of the main call, default is TaskMain
 -imd=<name> : imd structure name, default is taskimd

For example, if the option -auto is not given, the pattern AA 55 is not written to the structure.

Instead the pattern FF 55 is used. The module is not auto start able in that case. However,

using SYSMON's val command it can be changed into an auto-start module at runtime if it is

located in FLASH memory. See SYSMON documentation for more information on val.

46/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

CIMD should be integrated into a projects makefile. The generated object file must be the

first in the link sequence. In our example, we use the filename imd for the generated file

(imd.c, imd.$(REL)):
list of object files. File holding the IMD must be the first in the list.
OBJFILES = imd.$(REL) $(PROJECT).$(REL)

It is recommended to make the imd source file (imd.c in our case) depending of the makefile

itself. So we force a re-generation whenever an argument to CIMD is changed:

build rule for 'imd.c', rebuild when makefile was changed.
cmd {-options} <name> <file.c>
imd.c: makefile

$(CIMD) -public -auto -init=__cstart -version=1.10 mCAT/TickerTest imd.c

3.1.6. Compile and Download

To compile TICKTEST, follow the steps:

– Open mCAT command line

– Change to the directory where TICKTEST is located (<mcat_dir>\cc\ticker)

– enter vmake

The resulting output should look like:
C:\mcat.220\cc\ticker>vmake
C:\GNUDE\bin\arm-elf-gcc -D__ARMEL__ -O3 -c -Wa,-a -D_INT64 -fomit-fra
me-pointer -mlittle-endian -mcpu=arm7tdmi -Ic:\mcat\mcat\arm\cc\include -Ic:\mca
t\mcat\arm\HW\TSMARMCPU\inc -Ic:\gnude\arm-elf\include -DTSMARMCPU TIC
KTEST.c > TICKTEST.lst
c:\mcat\bin32\addfile TICKTEST.cll TICKTEST.c
C:\GNUDE\bin\arm-elf-gcc -D__ARMEL__ -O3 -c -Wa,-a -D_INT64 -fomit-fra
me-pointer -mlittle-endian -mcpu=arm7tdmi -Ic:\mcat\mcat\arm\cc\include -Ic:\mca
t\mcat\arm\HW\TSMARMCPU\inc -Ic:\gnude\arm-elf\include -DTSMARMCPU imd
.c > imd.lst
c:\mcat\bin32\addfile TICKTEST.cll imd.c
c:\mcat\bin32\mklnk std_ram TICKTEST TICKTEST.o imd.o
C:\GNUDE\bin\arm-elf-ld -EL --cref -Map TICKTEST.map --no-gc-sections
TICKTEST.LNK -oTICKTEST.abs
C:\GNUDE\bin\arm-elf-objcopy --strip-all -O srec --srec-len=64 --srec-
forceS3 TICKTEST.abs TICKTEST.shx
c:\mcat\bin32\s3patch -s=240 -l=TICKTEST.map TICKTEST.shx
 *** S3PATCH 1.02 ***

 IMD 'mCAT/TickerTest' V1.10 found @00402000
 ROMSTART = 00402000, RESERVED = 00402000
 ROMLENGTH = 0000090A, RESERVED = 00010000
 RAMSTART = 00412000, RESERVED = 00412000
 RAMLENGTH = 00000094, RESERVED = 00010000

© 2008 mocom software GmbH & Co KG 47/399

II. mCAT 2 Users Manual mCAT 2.20

C:\mcat.220\cc\ticker>

To download the resulting image file (ticktest.shx) into the mCAT node, use wlgo.exe:
C:\mcat.220\cc\ticker>wlgo ticktest.shx

C:\mcat.220\cc\ticker>

Note: If wlgo is already running, it will NOT start the download process. In this case, exit

wlgo or open the download dialog using the key F3.

3.1.7. Execute and Debug

Once the program is successfully loaded, it can be started using the SYSMON command

init 402000.

This command executes a modules TaskInit() function of the module located at 402000 –

and that is the usual location for RAM based test programs and the location we choose for

TICKTEST.

TICKTEST will clear the Terminals screen and display the counter:

To exit TICKTEST, press any key.

Great! To terminate the session, the reset command is your choice:
2+>reset

3.2. A Example using ExpressIO

ExpressIO is an abstract interface to the process i/o hardware. It is an important part of the

mCAT programming environment.

3.2.1. The Gifts of ExpressIO

ExpressIO makes it easy to structure and access physical process i/o. It allows the creation

of i/o objects that may inherit software implemented features (called ExpressPrograms) not

native to the physical i/o. Those features include counters, edge detectors and pulse genera-

tors.

48/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

With ExpressIO one can address a physical i/o directly using its physical location informa-

tion:

– The channel number of a

– module that is attached to a specific

– bus.

This triplet bus.module.channel can also be used to create an ExpressIO IOOBEJCT.

Once an IOOBEJCT is created, one can access i/o using the object and no longer worrying

about the triplet. Accessing all i/o in a program via IOOBEJCTS makes it easy to port, adapt

and enhance a program. To port it to a different hardware or to route a i/o to a different

physical port, just the IOObjCreate() function has to be changed. To make this even more

convenient, it is recommended to keep the creation and configuration of IOOBJECTS in a

single function at the beginning of your program. The recommended name of this functions

is SYSTEM().

In our example, you will see how to create an IOOBJECT, how to inherit a ExpressProgram,

how to subscribe events generated by the ExpressProgram. Running the program from

SYSMON will show how useful it is to have both options: addressing a raw i/o via the triplet

bus.module.channel and via the named IOOBJECT.

3.2.2. The Source Code

/*
 * EDGE
 *
 * (c) 2004 mocom software GmbH & Co KG
 *
 * File: EDGE.C
 *
 * Created: 02.06.2004 11:11:06 VG
 * --
 *
 * History:
 *
 * date version author comment
 * --
 * 02.06.2004 V2.00 VG derivated from an older version
 * --
 */
#include <mcat.h>
#include <xio\express.h>
#include <simpleio.h>
#include <ansi.h>

© 2008 mocom software GmbH & Co KG 49/399

II. mCAT 2 Users Manual mCAT 2.20

// needed for C startup code
PUBLIC INTEGER Self;

/*--
 * file-local variables
 *--
 */
PRIVATE IOOBJECT em_stop; /* input, emergency stop */

/*--
 * ExpressIO initialization function.
 *--
 */
INTEGER SYSTEM ()
{
 INTEGER error;

 // create IOObject and store error code. We bind the i/o port
 // BUS_TYPE_CPU,CPU_DIN,0 (aka CPU.1.0) to a named IOOBEJCT.
 // The object inherits the EDGE detector ExpressProgram.
 error = IOObjCreate (&em_stop, // the ExpressIo object
 "EMERGENCYSTOP", // a human-readable name
 BUS_TYPE_CPU, // select a bus (CPU|TSM|I2C...)
 CPU_DIN, // select a module (CPU_DIN)
 0, // select a channel (I1 on CPU)
 CLASS_DIGITAL, // we need a digital input!
 "EDGE"); // inherit a edge detector

 // display error code on fail
 if (error != IOERR_OK) {
 printf("IOERR = %d\n",error);
 return FALSE;
 } /* endif */

 // great, we created an IOOBEJCT!
 return TRUE;
}

/*--
 * Task initialization function.
 *--
 */
void TaskInit (IMD *imd)
{
 short error;

 Protect();
 Self = TaskStartup(imd,FromTop,&error,0);
 UnProtect();
}

/*--

50/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

 * Main function
 *--
 */
void TaskMain ()
{
 XPEvent em_stop_evt; // the io-event message

 // a derivate of a std. MCAT message
 MSGID *xpevtid; // msgid for subscription
 MSG *msg; // pointer to any type of message
 INT32 em_data; // value of EMSTOP
 INTEGER res; // return code of WAITIO()
 UNSIGNED len; // length
 UNSIGNED evtid; // eventid

 // print banner.
 printf(" *** EDGE DEMO ***\n\n");

 // init ExpressIO
 if (!SYSTEM()) {
 TraceWriteLog("ExpressIo Init failed\n");
 TaskDelete(Self);
 } /* endif */

 // subscribe em_stop_evt, trigger on both edges
 xpevtid = XPEventSubscribe(&em_stop_evt, // the event

 1, // a user selectable event id
 &em_stop, // the IOOBJECT
 IO_EVT_BOTH, // event request mask
 SYS_WAIT_INFINITE, // timeout
 &em_data, // pointer to data
 1); // size of em_data in INT32

 if (xpevtid == NULL) {
 printf("ERROR: Can't subscribe\n");
 TaskDelete(Self);
 } /* endif */

 // main loop
 loop {
 msg = MsgWait(0,SYS_WAIT_INFINITE);
 if (msg && msg->type == xpevtid->id) {
 // if we use msg here, we renew allways the correct
 // event
 XPEventRenew((XPEvent*)msg,&len,&evtid);
 // handle the events
 switch (evtid) {
 case 1:
 // EMSTOP
 if (len) {
 printf("EMSTOP=%d\n",em_data);
 } else {
 printf("ERROR: No data read\n");
 } /* endif */
 break;

© 2008 mocom software GmbH & Co KG 51/399

II. mCAT 2 Users Manual mCAT 2.20

 default:
 printf("ERROR: Unknown XPEvent\n");
 } /* endswitch */
 } else {
 printf("ERROR: Unknown MSG\n");
 } /* endif */
 } /* endloop */

 TaskDelete(Self);
}

3.2.3. Compile and Run

To run the example, it is necessary to connect the used digital out- and input. In this case we

use the digital output 0 (marked O1) and the input (marked I1) of the CPU itself.

Now we can inspect the system using the ExpressIO commands of the SYSMON system

monitor. First we use XLIST to get a list of installed modules and their ordinal numbers:
2+>xlist modules
BUS=CPU MODULE=01h TYPE=TSMARMCPU-DIN CHANNELS=08
BUS=CPU MODULE=02h TYPE=TSMARMCPU-DOUT CHANNELS=09
BUS=CPU MODULE=03h TYPE=TSMARMCPU-AIN CHANNELS=08
BUS=CPU MODULE=04h TYPE=TSMARMCPU-AOUT CHANNELS=02
BUS=CPU MODULE=06h TYPE=TSMARMCPU-EVTCNT CHANNELS=02
BUS=CPU MODULE=07h TYPE=TSMARMCPU-FREQ CHANNELS=08
BUS=TSM MODULE=00h TYPE=TSM-16A24P CHANNELS=16 WATCHDOG
BUS=TSM MODULE=02h TYPE=TSM-16E24 CHANNELS=16
BUS=TSM MODULE=03h TYPE=TSM-4INC CHANNELS=04 POWERFAIL
BUS=TSM MODULE=04h TYPE=TSM-4DA16 CHANNELS=04 POWERFAIL
BUS=TSM MODULE=05h TYPE=TSM-8AD8-KTY CHANNELS=08
BUS=TSM MODULE=07h TYPE=TSM-8AD12 CHANNELS=08
12 found.

From the output we learned that the digital inputs of the CPU have the module address 1.

The output module has the address 2. Lets try if we connected them correctly:
2+>xin cpu.1.0
0
2+>xout cpu.2.0 1
2+>xin cpu.1.0
1

Now we look for installed ExpressIO objects. On a naked system there are none, so:

2+>xlist objects
0 found.

This is the expected behavior. Assuming we already loaded edge.shx into the system, we

can start the demo now:

52/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 II. mCAT 2 Users Manual

2+>init 402000
 *** EDGE DEMO ***

Because we created a named ExpressIO object, xlist objects should display something

now.
2+>xlist objects
EMERGENCYSTOP
1 found.

Even better, we can use the name of the object to access the input. Note that object names

are case sensitive.
2+>xin EMERGENCYSTOP
1
2+>xin emergencystop

FAIL

Well, we can switch the output now. Because we are looking for for edges only, our program

should react:
2+>xout cpu.2.0 0
2+>EMSTOP=0
2+>xout cpu.2.0 1
2+>EMSTOP=1

Great! To terminate the session, the reset command is the choice:
2+>reset

You may play with the example. Try IO_EVT_ONE instead of IO_EVT_BOTH, for example.

4. What to Read Next?

Now its time to study the kernel reference, where the concepts and functions of the kernel is

documented in detail. You may also have a look into the SYSMON or ExpressIO documenta-

tion.

© 2008 mocom software GmbH & Co KG 53/399

III. SYSMON – A System Monitor mCAT 2.20

III. SYSMON – A System Monitor

1. Introduction

SYSMOM is a monitor program. It can be used to retrieve system information like task status

or interrupt status. It can also be used to download program images into systems RAM or

FLASH memory.

2. Line Setup and Terminal Features

SYSMON is available via serial RS232 communication. The line setup is 19200-8-N-1

(19200 Baud, 8 bits per character, no parity, one stop bit). Usually the serial line used is

marked “SER0” or “COM1”, depending on the naming convention of the hardware manufac-

turer. No hardware or software handshake is used.

SYSMON offers a very basic flow control when it comes to downloads. This feature is not

documented, but mocom's own wLGO Terminal program supports this flow control. If you

use a third party program (like HYERTERMINAL), you still can download SHX files. Use

ASCII transfers and set the so-called line-pacing to greater than 1ms and less than 10ms.

SYSMON uses the ASCII control characters BS (backspace, 0x08) for line editing only. No

cursor positioning codes are used. So line editing should work with almost all Terminal emu-

lations. Important: Disable auto-echo of your terminal program!

There are a few ASCII control characters supported by SYSMON for the users convenience.

ASCII Comment
ESC Clear input. The current line is cleared, cursor is set to position 0.

CTRL B Move cursor one position right, if possible.

CTRL F Move cursor one position left, if possible.

CTRL K Clear to end of line: Delete all characters right of the cursor. Cursor

position is not moved.
CTRL A Move cursor to begining of line (position 0).

CTRL E Move cursor to end of line (behind last character).

CTRL W Recalls the previous command line of the 4 line buffers available.

CTRL X Recalls the next command line of the 4 line buffers available.

CTRL D Delete character at the current cursor position.

CTRL H,

BACKSPACE

Delete character in front of current cursor position (rubout).

54/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

ASCII Comment
CTRL V Toggle between override and insert mode. In insert mode, if a char-

acter is right of the cursor position, a newly entered character is in-

serted in front of this character. In override mode, if a character is

right of the current cursor position, a newly entered character over-

wrights this character.

Using wlgo.exe you have not to deal with those codes, because wlgo maps the usual editing

keys (del,arrows,ESC) to those control characters.

3. Basic Syntax

3.1. SYSMON is Case Sensitive!

SYSMON syntax is case sensitive! All commands are expected to be entered in lower case.

3.2. Prompt

The Sysmon prompt is 2+>

The 2 signals mCAT Version of at least 2.00. The + signals support for a faster flow control

handling (used with wlgo only).

3.3. Numbers

Type Prefix Example
hexadecimal a digit 67778, 0ffff, 6adcf (must start with digit, at least

with a 0!)
decimal # #10 #0 #-234
binary % %0101010101010101010

The default type is hexadecimal.

3.4. Strings

For some commands, the arguments have to be passed as strings. A string is enclosed by

paragraphs. Example “huhu”. A paragraph within a string must be prefixed with a backslash.

Exampel “This is the string \”huhu\””.

© 2008 mocom software GmbH & Co KG 55/399

III. SYSMON – A System Monitor mCAT 2.20

4. Command Reference

4.1. SYSMON Help

help – online help

Syntax: help {command}

Description: Display the help information. Without an argument, help gives a list of

commands available. If the name of a specific command is given as an

argument, detailed help on the specific command is shown.

Remarks:

Example:
2+>help
ps is msgids msgid
libs modules mods show
idle mem heap pools
info help reset dump
find fill move crc
eemove in out S30..
upload init go suspend
resume kill eeread eewrite
flashid id erase delpage
purge val blank rmsys
settime gettime xin xvin
xout xvout xinfo xcfg
xlist ipset ips format
dir del attrib create
+ - . *
:
Try help <command> for more information on specific commands.
all numbers are presumed to be in hex notation. Use a leading
'#' to indicate decimal notation. Use a leading '%' to indicate
binary notation (01010101). Hex numbers must not start with a letter
(A-F, a-f). In such cases use a leading '0'.

2+>help fill
fill <from> <to> {byte|word|long} <value>
 fill memory {byte|word|long} from memory
 location <from to <to> using <value>

2+>fill 402000 412000 long 044332211
2+>dump 411fc0
00411FC0 11 22 33 44 11 22 33 44 11 22 33 44 11 22 33 44 * ."3D."3D."3D."3D
00411FD0 11 22 33 44 11 22 33 44 11 22 33 44 11 22 33 44 * ."3D."3D."3D."3D
00411FE0 11 22 33 44 11 22 33 44 11 22 33 44 11 22 33 44 * ."3D."3D."3D."3D
00411FF0 11 22 33 44 11 22 33 44 11 22 33 44 11 22 33 44 * ."3D."3D."3D."3D

56/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

00412000 FF FF E0 D7 FF DF 08 36 BF FF 75 DE FF F7 20 A6 *6..u... .
00412010 FF FF 73 9F FF FF 02 EA FF FF 42 85 DF FF BD DE * ..s.......B.....
00412020 0C 22 D3 56 41 83 51 DD 02 02 04 B4 54 02 80 32 * .".VA.Q.....T..2
00412030 02 00 08 46 00 90 22 E6 22 20 27 59 20 00 E4 B6 * ...F.."." 'Y ...
2+>

4.2. mCAT Base Commands

is – interrupt status

Syntax: is

Description: A list of all installed interrupt drivers in the system is displayed.

Int# = the interrupt number or id
drv name = name of the driver module serving this interrupt
ver = version of the module as stored in the IMD
ws = address of the Interrupts workspace
p = interrupt priority
t = if 1, its a PASS_MSG style interrupt driver, o if it is an old style driv-
er.
Int name = name of the interrupt source

Example:
2+>is
 int# | drv name | ver | ws | p | t | int name
------+------------------+------+-----------+---+---+--------------------
 0075 | mCAT/Ticker | 3.02 | 045EFCB8h | 1 | x |INT_TIMER_0
 0077 | mCAT/BitbusDrv | 1.00 | 045EDEFCh | 1 | x |INT_HDLC_RX_0
 0081 | mCAT/ETH0 | 1.00 | 045EB7F8h | 1 | x |INT_ETH_DMA_RX
 0082 | mCAT/ETH0 | 1.00 | 045EB858h | 1 | x |INT_ETH_MAC_TX
------+------------------+------+-----------+---+---+--------------------

© 2008 mocom software GmbH & Co KG 57/399

III. SYSMON – A System Monitor mCAT 2.20

ps – program status

Syntax: ps {-t}

Description: A list of all running tasks in the system is displayed. If the option -t is

given, a list of all active threads is given instead.

Remarks: The option -t is available on mCAT 2.20 ARM platforms only.

Example ps: task | name | vers | prio | thread | qid | state
------+------------------+------+------+-----------+-----+------------------
 0000 | mcat/GBS | 3.50 | 128 | 005ED478h | 017 | WAITING
 0011 | mCAT/HTTPD | 1.10 | 128 | 0057C9C8h | 021 | WAITING
 0012 | mCAT/HTTPD | 1.10 | 128 | 005879B0h | 020 | WAITING
 0013 | mCAT/IP | 1.00 | 120 | 005C582Ch | 019 | WAITING
 0014 | mCAT/Sysmon | 1.70 | 002 | 005EC634h | 018 | ACTIV
 0015 | mCAT/XPSERVER | 1.01 | 254 | 005EF910h | 016 | WAITING
------+------------------+------+------+-----------+-----+------------------

task = task number
name = name of the task as found in the IMD
vers = version of the task as found in the IMD
prio = current priority
thread = base address of the main thread's structure
qid = the tasks queue id
state = the state of the task (see ThreadGetState() function for de-
tails)

Example ps -t: tid | task | prio | addr | sque | stack | inuse | pc | state
------+------+------+-----------+--------+-------+-------+-----------+---------
 0016 | 015 | 254 | 005EF910h | 000000 | 01024 | 00236 | 00BC0A20h | WAIT
 0017 | 000 | 128 | 005ED478h | 000000 | 01024 | 00252 | 00BC0A20h | WAIT
 0018 | 014 | 001 | 005EC634h | 000001 | 01024 | 00744 | 00BC0A20h | ACTIVE
 0019 | 013 | 120 | 005C4FD8h | 000000 | 04096 | 00180 | 00BC0A20h | WAIT
 0020 | 012 | 128 | 0058715Ch | 000000 | 08192 | 00180 | 00BC0A20h | WAIT
 0021 | 011 | 128 | 0057C170h | 000000 | 08192 | 00180 | 00BC0A20h | WAIT
 0022 | KRNL | 255 | 0055E068h | 000000 | 01024 | 00024 | 00BC0E78h | WAIT
------+------+------+-----------+--------+-------+-------+-----------+---------

Tid = thread id
task = number of the task the thread belongs to
prio = priority of the thread
sque = signal queue
stack = allocated stack size for this thread
inuse = currently used stack size (this is not the minimum! Do not try to
set the stack size to this value!)
pc = the current program counter value. This value is equal for all
threads in the state WAIT
state = the state of the task (see ThreadGetState() function for de-
tails)

58/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

suspend – suspend a task

Syntax: suspend <taskno>

Description: Suspend task <taskno> (and all of its threads) from execution

Remarks:

resume – resume a task

Syntax: resume <taskno>

Description: Resume a previously suspended task <taskno> (and all of its threads).

Remarks:

kill – kill a task

Syntax: kill <taskno>

Description: Stop and remove a task (and its threads).

Remarks:

msgids – message ids

Syntax: msgids

Description: A list of all registered message ids in the system is displayed.
Type = the binary value used to identify a message, stored in the
member type of an mCAT message.
User = the task that serves messages of the given type
Pool = you can attach a message pool id to a MSGID data structure.
See also SYSMON command pools.
Name = the registered name of the message id.

Remarks: In earlier versions of sysmon this command was named “msgid”. The

old syntax is still available for your convenience.

Example:
2+>msgids
 type | user | pool | name
-----------+-------+-------+--------------------
 00000B02h | 000Bh | 0000h | VIEW.cmd

© 2008 mocom software GmbH & Co KG 59/399

III. SYSMON – A System Monitor mCAT 2.20

 00000B01h | 000Bh | 0000h | mCAT/httpd/VIEW
 00000C02h | 000Ch | 0000h | SERVICE.cmd
 00000C01h | 000Ch | 0000h | mCAT/httpd/SERVICE
 00000D04h | 000Dh | 0000h | mCAT/IP/DNS
 00000D03h | 000Dh | FFFDh | mCAT/IP/SOCKET
 00000D02h | 000Dh | 0000h | mCAT/IP/IP
 00000D01h | 000Dh | 0000h | mCAT/IP/ARP
 00005202h | 0052h | FFFEh | mCAT/IPIF/SEND::eth0
 00005201h | 0052h | FFFEh | mCAT/IPIF/CFG::eth0
 00004601h | 0046h | 0000h | mCAT/COM2/Write
 00004701h | 0047h | 0000h | mCAT/COM2/Read
 00004401h | 0044h | 0000h | mCAT/COM1/Write
 00004501h | 0045h | 0000h | mCAT/COM1/Read
 00000E01h | 000Eh | 0000h | mCAT/SYS/SERVICE/cmd
 00000001h | 0000h | 0000h | mCAT/GBS
 00004D01h | 004Dh | FFFFh | mCAT/Bitbus
 00000F02h | 000Fh | 0000h | mCAT/XPSERV/IoServer
 00000F01h | 000Fh | 0000h | mCAT/XPSERV/Subscribe
 00004B02h | 004Bh | 0000h | mCAT/Ticker
 00004B01h | 004Bh | 0000h | mCAT/Timer
-----------+-------+-------+--------------------

60/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

libs – list shared libraries

Syntax: libs

Description: A list of all registered shared libraries in the system is displayed.

Remarks:

2+>libs
 libid | name | ver
-------+------------------+------
 0000h | mCAT/Kernel | 3.00
 0001h | mCAT/MemMgr | 3.01
 0002h | mCAT/NameServer | 2.00
 0003h | mCAT/NvMemMgr | 1.10
 0005h | mCAT/GBSAPI | 1.10
 0008h | mCAT/IP/socket | 3.00
 0009h | mCAT/ExpressIO | 2.10
 000Ah | mCAT/Ticker | 3.02
 000Bh | mCAT/FlashMaint | 2.00
 000Ch | mCAT/XPIO/Server | 1.10
 0010h | mCAT/SimpleIO | 1.30
 0016h | mCAT/BGMAPI | 1.02
 0018h | mCAT/HTTPDLib | 1.00
-------+------------------+------

modules – list of all modules in FLASH memory

Syntax: modules {-m}

Description: A list of all start-able modules (tasks, interrupt drivers, shared libraries,

..) stored in the systems FLASH memory is displayed. If the option -m
is used, the used and reserved memory space for those modules are

displayed, separated for ROM (=FLASH) and RAM. If a module does

not support the new style IMD introduced with the mCAT Version 2.20

development environment, no memory layout data is displayed. In the

example following, the module “mCAT/TSM/BOOT” does so.

Remarks: In earlier versions of sysmon this command was named “mods”. The

old syntax is still available for your convenience.

Example:
2+>modules -m

© 2008 mocom software GmbH & Co KG 61/399

III. SYSMON – A System Monitor mCAT 2.20

 name | ver | rom.base | rom.len | ram.base | ram.len
------------------+------+-----------+-----------+-----------+-----------
 mCAT/IdleTask | 1.00 | 00BC0000h | 00008B30h | 007F0000h | 00007EBCh
 mCAT/Kernel | 3.00 | 00BC0000h | 00008B30h | 007F0000h | 00007EBCh
 mCAT/NvMemMgr | 1.10 | 00BC8B38h | 00001200h | 007F7EC0h | 00000018h
 mCAT/MemMgr | 3.01 | 00BC9D40h | 00000EE8h | 007F7EE0h | 000004A8h
 mCAT/NameServer | 2.00 | 00BCAC30h | 00000A50h | 007F8390h | 00000000h
 mCAT/Ticker | 3.02 | 00BCB688h | 00000D90h | 007F8398h | 00000010h
 mCAT/ExpressIO | 2.10 | 00BCC420h | 000016BCh | 007F83B0h | 00000010h
 mCAT/XPIO/Server | 1.10 | 00BCDAE0h | 000024F0h | 007F83C8h | 00000020h
 mCAT/XPSERVER | 1.01 | 00BCDAE0h | 000024F0h | 007F83C8h | 00000020h
 mCAT/FlashMaint | 2.00 | 00BCFFD8h | 00000B94h | 007F83F0h | 00000000h
 mCAT/BitbusDrv | 1.00 | 00BD0B70h | 000026B8h | 007F83F8h | 00000048h
 mcat/GBS | 3.60 | 00BD3230h | 0000548Ch | 007F8448h | 000000C8h
 mCAT/GBSAPI | 1.10 | 00BD3230h | 0000548Ch | 007F8448h | 000000C8h
 mCAT/TSM/ARMCPU | 1.02 | 00BD86C0h | 00001CACh | 007F8518h | 00000048h
 mCAT/TSM/DINOUT | 2.01 | 00BDA370h | 000006C0h | 007F8568h | 00000000h
 mCAT/TSM/2da12 | 1.11 | 00BDAA38h | 00000784h | 007F8570h | 00000048h
 mCAT/TSM/4DA16 | 1.01 | 00BDB1C0h | 00000860h | 007F85C0h | 00000048h
 mCAT/TSM/8ad12 | 2.00 | 00BDBA28h | 00000D40h | 007F8610h | 00000048h
 mCAT/TSM/8ad8 | 1.00 | 00BDC770h | 00000CC0h | 007F8660h | 00000048h
 mCAT/TSM/1inc | 1.00 | 00BDD438h | 0000037Ch | 007F86B0h | 00000000h
 mCAT/TSM/4INC | 1.00 | 00BDD7B8h | 00000680h | 007F86B8h | 00000000h
 mCAT/SWBUS/float | 1.00 | 00BDDE40h | 00000784h | 007F86C0h | 00000000h
 mCAT/SWBUS/int | 1.00 | 00BDE5C8h | 00000788h | 007F86C8h | 00000000h
 mCAT/Sysmon | 1.70 | 00BDED58h | 0000DE70h | 007F86D0h | 00000D0Ch
 mCAT/httpdfs | 1.00 | 00000000h | 00000000h | 00000000h | 00000000h
 mCAT/SerDrv | 2.03 | 00B48000h | 0000487Eh | 00401A00h | 00000000h
 mCAT/SimpleIO | 2.02 | 00B58000h | 00002756h | 00401B00h | 00000000h
 mCAT/BGMServer | 1.04 | 00B80000h | 000078A4h | 00400000h | 00000244h
 mCAT/BGMAPI | 1.02 | 00B878A8h | 00000DF8h | 00400248h | 00000000h
 mCAT/ETH0 | 1.00 | 00B886A8h | 00001B20h | 00400250h | 00000008h
 mCAT/IP | 1.00 | 00B8A1D0h | 00007F48h | 00400260h | 00000A78h
 mCAT/IP/socket | 3.00 | 00B8A1D0h | 00007F48h | 00400260h | 00000A78h
 mCAT/HTTPD | 1.20 | 00B92120h | 0000F6A4h | 00400CE0h | 000004ACh
 mCAT/HTTPDLib | 1.00 | 00B92120h | 0000F6A4h | 00400CE0h | 000004ACh
 mCAT/TSM/BOOT | 1.00 | --------- | --------- | --------- | ---------
------------------+------+-----------+-----------+-----------+-----------

show – display the bootlog

Syntax: show

Description: While mCAT starts up all information printed using the

TraceWriteLog() kernel function is stored in a ring buffer – called the

bootlog. Using the command show you can display this log. If the sys-

tem has many modules installed and/or uses TraceWriteLog frequent-

ly, the bootlog may not hold a complete boot protocol.

Example:

mCAT V2.20-R00168 TSMARMCPU [SAMSUNG S3C4530 ARM7TDMI]

62/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

(c) 1997-2004 mocom software Gmbh & Co KG
email: support@msac.de

mCAT/IdleTask 1.00
mCAT/Kernel 3.00
mCAT/NvMemMgr 1.10
mCAT/MemMgr 3.01
 2048 kByte RAM found
 256 kByte HEAP installed
mCAT/SimpleIO 1.30
mCAT/NameServer 2.00
mCAT/Ticker 3.02
mCAT/ExpressIO 2.10
mCAT/XPSERVER 1.01
mCAT/FlashMaint 2.00
mCAT/BitbusDrv 1.00
 NODE=2 SPEED=1.5 MBit/s BUFFERS=8 MSGLEN=255
mcat/GBS 3.50
mCAT/GBSAPI 1.10
mCAT/TSM/ARMCPU 1.01
mCAT/TSM/DINOUT 2.01
mCAT/TSM/4DA16 1.01
mCAT/TSM/8ad12 2.00
mCAT/TSM/8ad8 1.00
mCAT/SWBUS/float 1.00
mCAT/SWBUS/int 1.00
mCAT/Sysmon 1.70
mCAT/httpdfs 1.00
mCAT/BGMServer 1.04
 BGM: NO NVRAM AREA FOUND, BGM NOT INSTALLED
mCAT/BGMAPI 1.02
mCAT/ETH0 1.00
 ETH MAC: 00.06.EA.00.00.0C
 ETH 100-BASE-TX, HALF DUPLEX
 ETH MTU=1500, BUFFERS=100
 INTERFACE IP = 172.031.031.053 [AC1F1F35]
 GATEWAY ADDR = 172.031.031.253 [AC1F1FFD]
mCAT/IP 1.00
 USING DOMAIN NAMESERVER AT 172.031.031.254 [AC1F1FFE]
mCAT/IP/socket 3.00
mCAT/HTTPD 1.10
mCAT/HTTPDLib 1.00
mCAT/TSM/BOOT 1.00
SYSTEM STARTED

 *** SYSMON 1.70 ***

2+>

© 2008 mocom software GmbH & Co KG 63/399

III. SYSMON – A System Monitor mCAT 2.20

mem – display the memory utilization

Syntax: mem

Description: Display the size and utilization of installed RAM, the system heap and

the so-called NVRAM section (used by BGMEM to store data non-

volatile).

Remarks:

heap – display the heap utilization

Syntax: Heap {module name}

Description: Display base address, length of memory block and owner (imd name)

of all allocated blocks of memory. If module name is given, only

blocks allocated for the given module name are shown.

Example: 2+>heap mcat/gbs
 # | base | size | module
-------+-----------+----------+------------------
 00001 | 005ec81ch | 00000048 | mcat/GBS
 00002 | 005ec84ch | 00000076 | mcat/GBS
 00003 | 005ec898h | 00002056 | mcat/GBS
 00004 | 005ed0a0h | 00000164 | mcat/GBS
 00005 | 005ed144h | 00000076 | mcat/GBS
 00006 | 005ed190h | 00000032 | mcat/GBS
-------+-----------+----------+------------------

64/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

pools – display the buffer pool utilization

Syntax: pools

Description: Display the size and utilization of installed buffer pools. The informa-

tion includes number of buffers in a pool, number of free buffers in a

pool and the size of a single buffer.

Start and end mark the memory region from where the buffers of a giv-

en pool are allocated. Len gives the length of the buffers in a specific

pool. Buffers tells the number of buffers a pool was designed to hold.

Free tells how many buffers are still available. Owner tells the thread id

or interrupt id of the creator of that pool.

Pools is a powerful help when it come to debugging. If a applictaion or

driver consume more buffers than available or constantly holds more

buffers than expected, something is pretty wrong.

Remarks: This command is available on mCAT 2.20 ARM platforms only.

Please note that some drivers initially allocates a set of buffers for in-

ternal optimization. This is NOT A BUG!

Example:
2+>pools
 pool | start | end | len | buffers | free | owner
------+-----------+-----------+-------+---------+-------+-------
 000d | 005ED598h | 005EDEB8h | 00292 | 00008 | 00007 | 077
 001d | 005C50D0h | 005EAF10h | 01552 | 00100 | 00060 | 081
 002d | 005B7CF4h | 005BF0F4h | 00116 | 00256 | 00256 | 013
 003d | 005874F4h | 005B7CF4h | 01552 | 00128 | 00128 | 013
------+-----------+-----------+-------+---------+-------+-------

info – display system information

Syntax: info

Description: Display the hardware serial number, the build date and version of the

mCAT kernel and some other information of interest (including BIT-

BUS and ETHERNET settings).

Remarks: In earlier versions of SYSMON this command was named “serno”. The

old syntax is still available for your convenience.

© 2008 mocom software GmbH & Co KG 65/399

III. SYSMON – A System Monitor mCAT 2.20

reset – issue a system reset

Syntax: reset

Description: This command disables all interrupts and stops the servicing of the

hardware watchdog. As a result, a hardware reset will be issued.

Remarks:

4.3. Memory and I/O Manipulation Commands

dump – display memory

Syntax: dump {addr}

Description: Display 128 bytes of memory starting with {addr} in hexadecimal for-

mat. A ASCII representation of the bytes is also shown where applica-

ble .

Remarks:

find – find in memory

Syntax: find <startaddr> <endaddr> {!} <byte> <string> ...

Description: Find a sequence of bytes / string in memory. The search will start at

<startaddr> and end at <endaddr>. A single exclamation mark (!) after

<endaddr> forces a non-case-sensitive comparison.

Remarks:

fill – fill memory

Syntax: fill <startaddr> <endaddr> {byte|word|long} <value>

Description: Fill memory from <startaddr> to <endaddr> with<value>. By default,

value is assumed to be a byte value. Use the modifiers byte, word or

long to specify the width of value.

Remarks:

66/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

move – move memory

Syntax: move <from> <to> <length>

Description: Move a chunk of memory from address <from> to address <to>. The

length of the chunk is <length>.

Remarks:

blank – blank check memory

Syntax: blank <from> <to>

Description: Checks whether the given memory area is blank (all 0xFF). Operation

starts at address <from> and ends at address <to>.

Remarks:

crc – calculate the CRC32 code for a memory region

Syntax: crc <from> <to>

Description: Calculate the CRC32 cyclic redundancy check code for the memory

area from address <from> to address <to>.

Remarks: This function can be helpful to detect changes in regions where no

changes are expected.

© 2008 mocom software GmbH & Co KG 67/399

III. SYSMON – A System Monitor mCAT 2.20

in – read a byte, word or long word from the i/o space

Syntax: in {byte|word|long} <addr>

Description: Read a byte, word or long word from the i/o space. The value is dis-

played in hexadecimal, decimal and binary notation. If no width modifi-

er is given, a byte is read.

Remarks: On the Toshiba TLCS900 and ARM implementations of mCAT i/o is

memory mapped. This implies that you can use in to read values in

memory as well. This feature may not be guaranteed on future plat-

forms as they may have separate i/o spaces.

On ARM platforms you can cause an unaligned access exception (sys-

tem will reset!) if you specify word or long word access and your ad-

dress is not properly aligned. Example: in long 1

out – write a byte, word or long word into the i/o space

Syntax: out {byte|word|long} <addr> <value>

Description: Write a byte, word or long word into the i/o space. No output other

than a new line is made. If no width modifier is given, a byte is written.

Remarks: On the Toshiba TLCS900 and ARM implementations of mCAT i/o is

memory mapped. This implies that you can use out to write a values to

memory as well. This feature may not be guaranteed on future plat-

forms as they may have separate i/o spaces.

On ARM platforms you can cause an unaligned access exception (sys-

tem will reset!) if you specify word or long word access and your ad-

dress is not properly aligned. Example: out word 1 0aaff

68/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

4.4. Flash Memory Manipulation Functions

flashid – read the device id from flash memory

Syntax: flashid <addr>

Description: Returns type of the installed Flash at address <addr>. If no <addr> is

given, a list of supported Flash types is displayed.

Remarks: In earlier versions of sysmon this command was named “id”. The old

syntax is still available for your convenience.

erase – erase flash memory

Syntax: erase <addr>

Description: Erase a sector of a FLASH-Memory starting at <addr>. This command

immediately starts to physically erase the flash sector addressed by

<addr>.

Remarks: If any type of program is still running from within such a page, the sys-

tem WILL CRASH! This calls disables all interrupts until the operation

is complete. This can take a few seconds and may harm the system

functionality. To prevent those pitfalls use the command delpage in-

stead.

© 2008 mocom software GmbH & Co KG 69/399

III. SYSMON – A System Monitor mCAT 2.20

delpage – mark flash pages for deletion

Syntax: delpage <pageno> {<pageno>...<pageno>}

Description: Erase flash using flash maintainer 'FERA'. A list of up to 16 ordinal

page numbers is used to mark individual pages for deletion. The actual

deletion process is started after system reset when no interrupts are

active. This prevents the pitfalls of the erase command.

Example:

delpage 0 1 2 #12

Erase pages 0, 1, 2 and 12 after next system reset.

Remarks: The base addresses of the pages and their associated page numbers

are hardware depended and are documented in the mCAT release

documentation!

purge – invalidate a module

Syntax: purge <addr>

Description: Invalidate an IMD (AA55 => 0055) at <addr>. This command is useful

to deactivate a module in FLASH memory. Every mCAT module starts

with an IMD. The first entry in the IMD is the pattern 0xaa55. If this pat-

tern has another value, the module is not detected and as a conse-

quence not installed.

Remarks:

70/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

val – validate a module

Syntax: val <addr>

Description: Validate an IMD (FF55 => AA55) at <addr>. This command is useful to

activate a module in FLASH memory. Every mCAT module starts with

an IMD. The first entry in the IMD is the pattern 0xaa55. If this pattern

was set to 0xff55 instead at compile time, the module is not detected

and as a consequence not installed. However, you can still use the

SYSMON command init to start such a module. After use of val the

pattern will be changed and the module will be detected with the next

reboot.

Remarks: The commands val and purge are useful when you move a module

from RAM to FLASH. It is a good practice to set the IMD to 0xff55be-

fore you move to FLASH. Then you can use init to further test the

modules behavior in the FLASH environment. When you are sure its

working even in FLASH, use val to validate it and reboot the system.

The module will then be started automatically by the system.

4.5. EEPROM Manipulation Functions

eeread – read eeprom

Syntax: eeread <addr>

Description: Read one 16-Bit word from the serial EEPROM.

Remarks:

eewrite – write eeprom

Syntax: eewrite <addr> <value>

Description: Write one 16-Bit word into the serial EEPROM.

Remarks:

© 2008 mocom software GmbH & Co KG 71/399

III. SYSMON – A System Monitor mCAT 2.20

eemove – move in eeprom memory

Syntax: eemove <from> <to> <length>

Description: Move a chunk of memory in the serial eeprom from address <from> to

address <to>. The length of the chunk is <length>. Please note that all

addresses are 16-Bit values.

Remarks:

4.6. Program Upload / Download and Start

S3.. – store a S3/S7 format hex record in memory

Syntax: A valid S3/S7 record

Description: Every valid S3 format record send to SYSMON is accepted. The data

portion of the record is written to the memory using the embedded ad-

dress. SYSMON detects whether the target memory is RAM or FLASH

and it will invoke the FLASH programming functions as needed.

Remarks:

upload – memory upload

Syntax: upload <from> <to> {<recsize>}

Description: Send the memory region from address <from> to address <to> to the

the display using S3/S7 hex file format. If you activate logging with wl-
go.exe, you can retrieve the S3/S/ data from the logfile later.

Remarks: The record size is 64-bytes per record per default. You can modify the

record size using the optional argument <recsize>.

72/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

rmsys – remove system

Syntax: rmsys

Description: If you have to replace the current mCAT by another version, use rm-
sys invalidate the mCAT core module, to mark all flash pages that

need to be deleted and to issue a reset. After the reset, the so-called

BOOTMON software (looks pretty like std. MCAT) will allow you to

download a new mCAT S3/S7 image.

Remarks: Useful for system updates.

init – init module

Syntax: init <addr>

Description: 'init' a module (e.g. create a task) by executing its TaskInit() function.

Useful to start modules in RAM or disabled modules (see command

purge) in FLASH memory.

Remarks:

go – call function

Syntax: go <addr>

Description: Execute code at <addr>. The code is executed in the task space of

SYSMON so you can easily hang up SYSMON! Be careful!

Remarks: Used for very special situations only!

4.7. Optional Commands

4.7.1. ExpressIO Specific Commands

SYSMON supports a minimum set of commands to explore and test ExpressIO. It allows

both, access to physical drivers via bus.module.channel and access to named IOOBE-

JCTS.

© 2008 mocom software GmbH & Co KG 73/399

III. SYSMON – A System Monitor mCAT 2.20

xlist – list ExpressIo properties

Syntax: Xlist modules|xp|objects|busses

Description: Xlist can be used to explore the installed ExpressIo. Using the sub-op-

tions, it is easy to verify the installed hardware and the available Ex-

pressPrograms.

modules = list all hardware modules installed

xp = list all ExpressPrograms available

objects = list all named ExpressObjects in the system

busses = list physically available buses

Remarks:

Example output:
2+>xlist xp
CAPTURE
CAPTURE
VECCOUNTER
PULSE
EDGE
COUNTER
6 found.
2+>xlist xp busses
CPU SLOTS=8 MODULES INSTALLED=6
TSM SLOTS=16 MODULES INSTALLED=6
SFT SLOTS=64 MODULES INSTALLED=0
3 found.
2+>
xlist modules
BUS=CPU MODULE=01h TYPE=TSMARMCPU-DIN CHANNELS=08 POWERFAIL
BUS=CPU MODULE=02h TYPE=TSMARMCPU-DOUT CHANNELS=09
BUS=CPU MODULE=03h TYPE=TSMARMCPU-AIN CHANNELS=08
BUS=CPU MODULE=04h TYPE=TSMARMCPU-AOUT CHANNELS=02
BUS=CPU MODULE=06h TYPE=TSMARMCPU-EVTCNT CHANNELS=02
BUS=CPU MODULE=07h TYPE=TSMARMCPU-FREQ CHANNELS=08
BUS=TSM MODULE=00h TYPE=TSM-16A24P CHANNELS=16 WATCHDOG
BUS=TSM MODULE=02h TYPE=TSM-16E24 CHANNELS=16
BUS=TSM MODULE=03h TYPE=TSM-4INC CHANNELS=04 POWERFAIL
BUS=TSM MODULE=04h TYPE=TSM-4DA16 CHANNELS=04 POWERFAIL
BUS=TSM MODULE=05h TYPE=TSM-8AD8-KTY CHANNELS=08
BUS=TSM MODULE=07h TYPE=TSM-8AD12 CHANNELS=08
12 found.

74/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

xin – read a single channel

Syntax: xin <bus>.<module>.<channel> | <ioobject>

Description: Read and display the value of a single channel. The channel can be

addressed using the bus.module.channel enumeration scheme or via

existing ExpressObjects.

Remarks:

Example 1 (cpu.1.1 is a digital input):
2+> xin cpu.1.1
0
2+>

Example 2 (cpu.3.1 is an analog input):
2+> xin cpu.3.1
000003F9h [1017]
2+>

Example 3 (a named IOOBJECT, a digital input)
2+> xin belt_moves
0
2+>

xout – write to a single channel

Syntax: xout <bus>.<module>.<channel> | <ioobject> <value>

Description: Write the value <value> to a specific channel. The channel can be ad-

dressed using the bus.module.channel enumeration scheme or via ex-

isting ExpressObjects.

Remarks:

Example output:
2+> xout cpu.2.8 1
2+>

© 2008 mocom software GmbH & Co KG 75/399

III. SYSMON – A System Monitor mCAT 2.20

xvin – read all channels of a module

Syntax: xin <bus>.<module> | <ioobject>

Description: Read all channels of a module. The module can be addressed using

the bus.module.channel enumeration scheme or via existing Expres-

sObjects.

Remarks:

Example 1 (digital i/o):
2+> xvin cpu.2
0000.0000.0
2+>

Example 2 (analog i/o):
2+>xvin cpu.2 3
00000432h [1074]
00000437h [1079]
0000045Ah [1114]
00000469h [1129]
0000045Ah [1114]
00000459h [1113]
00000468h [1128]
00000001h [1]
2+>

xvout – write to all channels of a module

Syntax: xvout <bus>.<module> | <ioobject> <val0> <val1> .. <valN>

Description: Write a list of values (<val0> <val1> .. <valN>) to the channels of a

module. The values will be assigned to the outputs as they appear in

the list (<val0> == channel 0, <val1> == channel 1 ...).

Remarks:

Example:
2+> xvout cpu.2 1 1 0 0 1 1 0 0 1
2+>

76/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

xinfo – read a configuration item

Syntax: xinfo <bus>.<module>{.<channel>} | <ioobject> <item>

Description: Read a configuration item. The item identifier <item> must be a nu-

meric constant. If a module specific item shall be read, the argument

<channel> is optional.

Remarks: See also 4.7.1.1. Constant Values Used for xinfo & xcfg Commands

Example output:
2+> xinfo cpu.1.0 2
TSMARMCPU-DIN
2+> xinfo cpu.1 2
TSMARMCPU-DIN
2+>

xcfg – write a configuration item

Syntax: xcfg <bus>.<module>.<channel> | <ioobject> <item> <value>

Description: Write a configuration item. The item identifier <item> and the value

<value> must be numeric constants. If a module specific item shall be

read, the argument <channel> is optional.

Remarks: See also 4.7.1.1. Constant Values Used for xinfo & xcfg Commands

Example output (set analog input channel range to 0-5V):
2+> xcfg cpu.3.1 #10 012

4.7.1.1. Constant Values Used for xinfo & xcfg Commands

This section lists all constant values needed for the xcfg & xinfo commands in SYSMON

compatible form. For details on items, the use and meaning of the cfg/info calls and those

constants, please refer to the ExpressIO documentation.
// XCFG items
CFG_SET_ENABLE 6
CFG_SET_CHANNEL_RANGE #10
CFG_SET_CONV_SPEED #11
CFG_SET_GAIN #12
CFG_SET_ATTENTUATE #13
CFG_SET_OFFSET #14
CFG_SET_LINTAB #15
CFG_SET_PWM_FREQ #16
CFG_SET_INC_MODE #20

© 2008 mocom software GmbH & Co KG 77/399

III. SYSMON – A System Monitor mCAT 2.20

CFG_SET_DIR #21
CFG_SSI_SET_TURNS #22
CFG_SSI_SET_STEPS #23
CFG_SET_CHANNELS #30
XP_CFG_SET_SAMPLE_RATE 08001
XP_CFG_SET_LOWTIME 08002
XP_CFG_SET_HIGHTIME 08003
XP_CFG_SET_TRIGGERMODE 08004
XP_CFG_SET_INVERSION 08005
// XINFO items
INFO_GET_IDENT 1
INFO_GET_IDENT_STRING 2
INFO_GET_VECTOR_SIZE 3
INFO_GET_PORT_CLASS 4
INFO_GET_POWERFAIL 5
INFO_GET_WATCHDOG 6
INFO_GET_CHANNEL_RANGE 7
INFO_GET_START_MODE 8
INFO_GET_GAIN 9
INFO_GET_ATTENTUATE #10
INFO_GET_OFFSET #11
INFO_GET_LINTAB #12
INFO_GET_ADDRESS #13
INFO_GET_INC_MODE #14
INFO_GET_INDEX_STATUS #15
INFO_GET_CHANNELS #30
XP_INFO_GET_IDENT_STRING 08000
XP_INFO_GET_SAMPLE_RATE 08001
XP_INFO_GET_MAX_SAMPLE_RATE 08002
XP_INFO_GET_LOWTIME 08004
XP_INFO_GET_HIGHTIME 08005
XP_INFO_GET_TRIGGERMODE 08006
XP_INFO_GET_INVERSION 08007
// I/O CLASS INFO
CLASS_DIGITAL 00001
CLASS_ANALOG 00002
CLASS_PWM 00004
CLASS_FREQ 00008
CLASS_EVTCNT 00010
CLASS_POS 00020
CLASS_INTEGER 00040
CLASS_FLOAT 00080
CLASS_INPUT 08000
CLASS_OUTPUT 00000
CLASS_RMW 04000
// AD/DA CONFIGURATION VALUES
RANGE_RAW 001
RANGE_RAW_U_10000 002
RANGE_RAW_U_5000 003
RANGE_RAW_S_10000 004
RANGE_RAW_S_5000 005
RANGE_U_10000 011
RANGE_U_5000 012

78/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

RANGE_S_10000 014
RANGE_S_5000 015
RANGE_UB 01f
RANGE_020mA 020
RANGE_420mA 021
RANGE_PT100V4 031
RANGE_KTY 032
RANGE_KTY10 032
RANGE_KTY81 032
RANGE_LM34 034
RANGE_THERMO_K 041
RANGE_THERMO_J 042
// TSM4SSI ONLY
SSI_START_0 01
SSI_START_1 02
SSI_START_2 04
SSI_START_3 08
SSI_START_ALL 0f
// COUNTER MODE FOR TSM4INC
INC_MODE_QUADRATURE_X1 1
INC_MODE_QUADRATURE_X2 2
INC_MODE_QUADRATURE_X4 3
// MODE FOR PULSE EXPRESSPROGRAM
TRG_SINGLE 1
TRG_RETRIGGER 2
TRG_QUEUED 3
INVERT_OFF 0
INVERT_ON 1

4.7.2. Realtime Clock Specific Commands

settime – set system RTC

Syntax: settime #hh #mm #ss #dd #mm #yyyy

Description: Set the real-time clock. Be sure to use the '#' to signal SYSMON deci-

mal input! Example:

settime #16 #30 #23 #24 #02 #2003

will set the RTC to:

24.02.2003 16:30:23

Remarks: Time must be in UTC!!

© 2008 mocom software GmbH & Co KG 79/399

III. SYSMON – A System Monitor mCAT 2.20

gettime – display system time (RTC)

Syntax: gettime

Description: Print out current time [UTC]

Remarks: Time must be in UTC!!

4.7.3. BGMEM Specific Commands

4.7.3.1. format {size}

Formats BgMem - deletes all files. If a size is specified and if this differs from EEPROM word

15 then this new size is written to EEPROM and a RESET is executed to make the new

memory layout active. All data in the BgMem memory is lost.

4.7.3.2. dir

Shows a list of available files
2+>dir
---F EventFifo.log 00128 / 00040
 CREATED TUE 2001-7-10 8:3:59
 LAST MODIFIED TUE 2001-7-10 8:3:59
00001 good files found

The first letters represent the file attributes. The first two are reserved for extensions, the 3rd

is “R” for Read only or “-“ for R/W. The last attribute is the file type “-“ for random file, “F” for

FIFO, “L” for LIFO and “R” for ring buffer.

The file name, the number of records and their size follow.

4.7.3.3. attrib <filename> <+r|-r>

The first argument is the file name, the second a switch. “+r” activates read only.

4.7.3.4. del <filename>

Deletes a file.

4.7.3.5. create <filename><#records><#size><fifo|lifo|ring|random>

Creates a file <filename> with <#records> of <#size>each. The structure of the file is “fifo” or

“lifo” or “ring” or “random”.

80/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

A size of 0 selects a file of maximum size (BGM_MODE_FIT)

4.7.4. SOCKET / Ethernet Specific Commands

4.7.4.1. IP-Information at a Glance: info and ips

The mCAT system monitor SYSMON offer a command called info. It takes no arguments

and displays some system configuration values – including the IP configuartion. Simply issue

info at the command line and you will get an output like:

mCAT Version 2.20-D00166 Build 401FC857
 (c) 1997-2004 mocom software Gmbh & Co KG
 email: support@msac.de

 SERNO=DAV092
 SYSSTART=00BC0000 HARD=0012 CORE=1101

BITBUS NODE=2 SPEED=1.5 MBit/s BUFFERS=8 MSGLEN=255
 RADIO MODE = OFF

ETHERNET 0:
 MAC=0006 EA00 000C
 AUTONEGOCIATE

 IP ADDR = 172.031.031.053
 SUBNETMASK = ---.---.---.---
 GATEWAY = 172.031.031.253
 DNS = 172.031.031.254
 MTU = 1500
 MAX SOCKETS = 64

---.---.---.--- means “not set”

4.7.4.2. Setup IP-Addresses: setip

The ipset command can be used to setup the IP configuration of a system. At the command

line the command expects an item selector and an address as an argument.

Please note that the address MUST be enclosed in quotes.

Please also note that the IP address is the only value that MUST be set to operate a mCAT

node in a simple intranet.

ipset IP "xxx.xxx.xxx.xxx" set the IP address
ipset NM "xxx.xxx.xxx.xxx" set the NETMASK if other than default
ipset GW "xxx.xxx.xxx.xxx" set the GATEWAY address (optional)
ipset DN "xxx.xxx.xxx.xxx" set the DOMAIN NAME SERVER address

© 2008 mocom software GmbH & Co KG 81/399

III. SYSMON – A System Monitor mCAT 2.20

Example:
ipset ip “172.31.31.54”

Setting a GATEWAY address allows the node to communicate with hosts in other networks

(e.g. The Internet). To prevent this set GATEWAY to “255.255.255.255” (will be displayed as

“not set”). To prevent that a host from another network (e.g. the internet) connects itself to

your local nodes, set GATEWAY to “0.0.0.0”. In that case, the mCAT TCP/UDP/IP protocol

stack accepts only traffic from and to hosts attached to the same network (controlled by the

network mask).

If you do not need a GATEWAY, it is recommended to set gateway to “0.0.0.0”.

4.7.4.3. List IP-Status: ips

This command lists all allocated sockets. Note that TCP server side anonymous sockets

used to maintain connections have an rport (remote port) and an rip (remote ip address)

ONLY!

 # | prt | port | rport | rip | lis | acid | endpoint
-----+-----+-------+-------+-----------------+-----+-------+------------------
 001 | TCP | 8000 | 0 | 000.000.000.000 | 001 | 0 | mCAT/httpd/SERVICE
 002 | TCP | 80 | 0 | 000.000.000.000 | 004 | 0 | mCAT/httpd/VIEW
-----+-----+-------+-------+-----------------+-----+-------+------------------

4.7.4.4. Set/Display Ethernet Mode

(New with R00409 and later)

This command can be used to set the Ethernet mode. The standard mode is AUTONEGO-

CIATE. On some systems the standard is AUTONEGOCIATE10 (limiting the negotiation to

the 10MBit modes) to limit the power dissipation.
ethmode {<infno>} "<mode>"
 set/display phymode of ethernet interface <infno>.
 If <infno> is not given, std. interface 0 is used.
 <mode> can be of:
 auto,autu10,auto100,full100,full10,half100,half10,isolate

The command displays the current preset mode (the one that is stored in eeprom and that is

and will be valid after startup) and the current state of the physical interface (PHY). If you

use ethmode, you change the preset mode only.
2+>ethmode

82/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 III. SYSMON – A System Monitor

 PRESET MODE : AUTONEGOTIATION
 CURRENT STATE: 100-BASE-TX, HALF DUPLEX
2+>ethmode "100full"
 PRESET MODE : 100-BASE-TX, FULL DUPLEX
 CURRENT STATE: 100-BASE-TX, HALF DUPLEX
2+>reset

....
2+>ethmode
 PRESET MODE : 100-BASE-TX, FULL DUPLEX
 CURRENT STATE: 100-BASE-TX, FULL DUPLEX

4.7.4.5. Set the TELNETD Password

(New with R00409 and later)

Using the command passwd you a new password for the telnet connection can be set.

Please note that only one TELNET connection can be opened to SYSMON at a time. The

telnet connection disables the serial connection to Sysmon as well.

Do not try to download SHX-Files via telnet, because this protocol is not prepared to handle

the necessary handshake.
2+>help passwd
passwd "<oldpasswd>" "<newpasswd>"
 change telnetd password. If no password is used up to now, a
 emtpy string "" must be used.

© 2008 mocom software GmbH & Co KG 83/399

IV. mCAT Kernel Reference mCAT 2.20

IV. mCAT Kernel Reference

1. The mCAT Kernel Technical Reference

The mCAT-Kernel is designed to control and manage the resources of the central process-

ing unit (CPU). The main resource of the CPU is the processing time – and that is the focus

of the kernel functions. Other important resources, like memory resources, are managed in

separate modules – and this is again another important feature of the basic mCAT concept:

A functionality can be implemented in separated modules. To achieve the modularity needed

therefore, mCAT offers different kinds of modules:

1. Tasks / Threads

2. Interrupt-Drivers

3. Shared Libraries

4. Inits

The functions needed to manage and to interconnect these modules are incorporated in the

mCAT-Kernel. The glue needed to interconnect all modules is the message passing.

1.1. Typographic Conventions

A few conventions should help us to keep the overview ...

A word or phrase of importance is set in italic style.

A Constant defined in a header file included is set in this style.

1.2. A note on Datatypes

With mCAT 2.10-R00168 we have changed a few data types and names of data types for

better compatibility. However, the old mCAT 2.10 data types are still available and fully valid.

Please take the following table as a reference for the different types:

84/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

MCAT 2.10
and earlier

MCAT 2.10-
R00168

minimum maximum use

byte UINT8 0 255
word UINT16 0 65535
lword UINT32 0 4294967295

- UINT64 0 264-1 Not available with TLCS900
- INT8 -128 127

short INT16 -32768 32767
long INT32 -2147483648 2147483647

- INT64 -263 263-1 Not available with TLCS900
int* INTEGER* -32768* 32767* Default type for small inte-

gers
unsigned* UNSIGNED* 0 65535* Default type for unsigned in-

tegers
bool BOOL TRUE FALSE

* The range of those types depend on the target platform. We assume that for those types

the 16-Bit data range is the minimum we can rely on.

2. mCAT Tasks

2.1. The Concept of Tasks

This section describes task related functions. A task is the smallest globally addressable pro-

gram unit within mCAT. A task consists of at least one thread (separately executable pro-

gram inside a task). You don't have to worry about threads if your tasks contain just one pro-

gram.

2.2. Relation with other mCAT Concepts

As we heard before, a task includes one or more threads. It can call functions implemented

in a shared library and send / receive messages to/from other tasks or interrupt drivers.

2.3. Task Related Data Structures

Every Task needs one global variable of type INTEGER called Self. Self is used to store the

taskid, a 16-bit signed integer value. The taskid is needed to identify the task within various

function calls. It is also needed in the C-Startup code (see file __v4.c in cc\lib).

© 2008 mocom software GmbH & Co KG 85/399

IV. mCAT Kernel Reference mCAT 2.20

2.3.1. The Data Structures before MCAT 2.20-R00168

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification in both size and structure!

typedef struct {
lword type; /* Type of accepted messages */
lword tree; /* message queue */
THREAD thread; /* waiting thread */

} QUEUE;

typedef struct {
IMD imd; /* IMD of this task */
THREAD main; /* pointer to main THREAD */
lword res0; /* MUST BE NULL */
lword res1; /* MUST BE NULL */
lword res2; /* MUST BE NULL */
lword res3; /* MUST BE NULL */
word flags; /* Task feature / state flags */
word quemax; /* number of available queue descriptors */
word quecnt; /* number of used queue descriptors */
QUEUE queue[1]; /* array of queue descriptors */

} TASK;

2.3.2. The Data Structures for non TLCS platforms, MCAT 2.10-R00168 and later

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification in both size and structure!

typedef struct {
 MCATMSG *tree; // the message tree
 UINT32 id; // the ass. msgid
 THREAD *waiting; // the ass. thread
} MQUEUE;

typedef struct __mddesc__ {
 RTTI rtti;
 RTTI owner;
 union {
 struct __ws__ *ws;
 struct __task__ *tsk;
 struct _mthread *thread;
 struct __mddesc__ *next;
 void *owner;

86/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

 } link;
 UNSIGNED max; // maximum number of possible queues
 UNSIGNED avail; // number of allocated queues
 MQUEUE queues[4]; // the queues, minimum 4
} MQUEUEDESC;

typedef struct __task__ {
 RTTI rtti; // runtime type identifier

IMD *imd; // pointer to module identifier
THREAD *main; // pointer to main thread
UINT32 res0; // place holder
UINT32 res1;
MQUEUEDESC *qd; // queues

} TASK;

2.4. Function Reference

A task has, like an interrupt driver, an identification number called "task id" or "task number".

This id is assigned to the task during the TaskCreate kernel function call. A task is ad-

dressed by this id in contrast to a thread which cannot be addressed globally. For that rea-

son it's possible to send a message to a task but not to a thread.

© 2008 mocom software GmbH & Co KG 87/399

IV. mCAT Kernel Reference mCAT 2.20

TaskCreate

Function: Creates a task for use by mCAT. At this time the object code must be

resident in memory, it must contain a valid IMD (task header) and the

program code for TaskInit and TaskMain. TaskCreate does not activate

the task.
C-Prototype: INTEGER TaskCreate (IMD *imd, INTEGER dir, INT16 *error, INTE-

GER queues);
Arguments: imd Pointer to a data structure IMD witch can be generated by

the CIMD.EXE utility. See tools manual for more informa-

tion.
dir Assign numbers form the bottom (0) or the top of the list

(MAX-TASK, for ex. 15). Allows the two predefined values

"FromBottom" or "FromTop" FromBottom is reserved for

BITBUS GBS TASK only (as BITBUS GBS TASK must be

task ‘0'), FromTop is for all other purposes.

Error code SYS_ERR_OK ok

SYS_ERR_OUT_OF_MEMORY No memory available

SYS_ERR_ID_OVERFLOW Can't allocate ID (no

more tasks)

queues If greater than 0, your task will be able to support more

than the default queue. A value of 0 assumes the default

value of 1 queue, a one means one additional queue. You

need more than the default queue if you plan to have spe-

cialized threads waiting for messages form a specific

source.
Returns: Taskid, a 16 bit integer for task identification

Supported: mCAT All versions
Hardware All

Comments: Within the mCAT runtime library there is a support function called

TaskStartup. It has the same calling convention as TaskCreate. In

contrast, TaskStartup automatically calls TaskActivate after suc-

cessful creation of a Task.

88/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

TaskDelete

Function: Deletes a task (its main thread) and all of its threads. Stops operation

and - in case a dynamic memory manager is installed - frees memory

used for this task and its threads.
C-Prototype: INTEGER TaskDelete (INTEGER taskid);
Arguments: taskid Identification assigned to task by TaskCreate

Returns: Error code SYS_ERR_OK ok

SYS_ERR_NO_TASK Task does not exist
Supported: mCAT All versions

Hardware All

Comments:

TaskActivate

Function: Activates a task, i.e. puts it into the list of tasks ready to receive the pro-

cessor if their priority is the highest on the list. If the task being activated

has a higher priority than the currently running task, the current task is

interrupted and the newly activated task starts immediately. A task must

have been created before it can be activated. The function TaskStartup

both creates and activates a task.

TaskActivate activates the main thread of the task by calling ThreadSig-

nal.
C-Prototype: INTEGER TaskActivate (INTEGER taskid, UNSIGNED prio);
Arguments: taskid Identification assigned to task by TaskCreate

prio Priority to override the startup priority defined in the task

header IMD.
Returns: Error code SYS_ERR_NO_TASK Task not existent
Supported: mCAT All versions

Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 89/399

IV. mCAT Kernel Reference mCAT 2.20

TaskSuspend

Function: All threads of this task are suspended, i.e. they are taken out of the

ready list and are marked suspended. Signals or messages sent to sus-

pended tasks are not queued. The only way to re-activate a suspended

task is to use the TaskResume call. Use this call for debugging purpos-

es.

TaskSuspend calls ThreadSuspend to resume all threads associated

with the Task.
C-Prototype: INTEGER TaskSuspend (INTEGER taskid);
Arguments: taskid Identification assigned to task by TaskCreate

Returns: Error Code SYS_ERR_NO_TASK Task not existent

SYS_ERR_IS_SUSPENDED Task is already sus-

pended.
Supported: mCAT All versions

Hardware All

Comments:

90/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

TaskResume

Function: Puts all threads of this task into the ready list again. Used for tasks that

had been suspended by TaskSuspend.

TaskResume calls ThreadResume to suspend all threads associated

with the Task.
C-Prototype: INTEGER TaskResume (INTEGER taskid);
Arguments: taskid Identification assigned to task by TaskCreate

Returns: Error Code SYS_ERR_NO_TASK Task not existent

SYS_ERR_IS_NOT_SUSPENDED

Task is not suspended.
Supported: mCAT All versions

Hardware All

Comments:

TaskGetState

Function: Returns information about the main thread. For more information see

ThreadGetState.
C-Prototype: INTEGER TaskGetState (INTEGER taskid);
Arguments: taskid Identification assigned to task by TaskCreate

Returns: See ThreadGetState for more information

Supported: mCAT All versions
Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 91/399

IV. mCAT Kernel Reference mCAT 2.20

TaskGetPtr

Function: Returns a pointer to a task descriptor. Advanced and system use only.

C-Prototype: TASK *TaskGetPtr (INTEGER taskid);
Arguments: taskid Identification assigned to task by TaskCreate

Returns: Pointer Pointer to Task descriptor. If NULL, task is unknown.

Supported: mCAT All versions
Hardware All

Comments:

3. mCAT Threads

3.1. The Concept of Threads

This section describes thread related functions. A thread is the smallest executable program

unit in mCAT. It is not globally addressable and can only be used within tasks. A thread can

be dedicated to a special queue (special message types) thus work on data that comes from

a single source. It might be used to handle a certain peripheral or communication channel.

However, it is much more efficent to do the same job using a periodic event like a “Tick-

erMsg” to do some event polling.

Threads can be in one of the following states:

1. SUSPENDED

It's not in the list of ready threads and marked as suspended. It can be activated only by a

call to ThreadResume. Signals sent to a suspended thread are lost.

2. SLEEPING

A thread is sleeping if it was just created or if a ThreadSleep, ThreadSleepQueued or Msg-

Wait call was issued. Contrary to a suspended thread, it will get back into the ready list by

receiving a signal (a message).

3. DELAYED

A thread is waiting for a timeout to elapse inside a ThreadDelay call. Nothing but the elapsed

timeout can remove the thread form this state.

4. READY

92/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

If a thread is not suspended and not in delayed state, it can change form sleeping state into

the ready state when a signal (ThreadSignal, MsgSend et al.) is received. The thread is

added to the ready list. The thread with the highest priority in the ready list is the currently

running thread.

5. RUNNING

There can be only one running thread - the one on top priority in the ready list.

A thread can create child threads. Be careful when accessing variables form different

threads. Use Protect/Unprotect for critical sections.

3.2. Relation with other mCAT Concepts

Threads are the basic program unit in mCAT. Every task contains one or more threads. The

top most thread of a task is the main thread. A task without at least one thread is a dead

task.

3.3. Thread Related Data Structures

3.3.1. MCAT 2.10 and later - TLCS900 Platform

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification in both size and structure!

typedef struct __thread {
struct __thread *next; /* used for internal management */
struct __thread *prev;
lword time; /* used for timeout */
lword null; /* reserved */
byte flags; /* "most important flags" */
byte prio; /* prio of thread */
lword taskid; /* own task */
struct __thread *parent; /* parent thread ptr. */
struct __thread *child; /* child thread ptr. */
lword xsp; /* act. stack pointer */
lword isp; /* initial stack pointer */
lword bsp; /* base of stack (lowest possible addr) */
lword ipc; /* initial pc */
byte iprio; /* initial priority */
byte res1; /* reserved */

} THREAD;

© 2008 mocom software GmbH & Co KG 93/399

IV. mCAT Kernel Reference mCAT 2.20

3.3.2. mCAT 2.20 – non TLCS platform

typedef struct _mthread {
 CPU_REGISTER cState; // CPU depending register model

XT timer; // timeout & round robin
 struct _mthread *next; // scheduler list next

struct _mthread *prev; // scheduler list prev
struct _mthread *parent; // parent thread ptr.
struct _mthread *pnext; // parent thread chain
struct _mthread *child; // child thread ptr.
UNSIGNED sigq; // signal queue
UNSIGNED flags; // "most important flags"
UNSIGNED prio; // prio of thread
INTEGER retval; // retval of sleep
INTEGER taskid; // own task
INTEGER qid; // reply queue id
HLIST *hlist; // argument list
UINT32 bsp; // base of stack (lowest possible addr)
UINT32 isp; // initial stack pointer

} THREAD;

94/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

3.4. Function Reference

ThreadCreate

Function: Creates a thread for use by mCAT. The function will generate a descrip-

tor structure (THREAD) and put the thread to the sleeping state: it must

receive a signal to run. The new thread is created in the task space of
the current task.

C-Prototype: THREAD *ThreadCreate (INTEGER (*start)(), long stacksize, UNSIGNED priority);

Arguments: start Pointer to start of thread code (label start)
stacksize Required size of stack in bytes. Suggested value: 1024
priority Starting priority of thread

Returns: Pointer Pointer to the thread descriptor or NULL if call fails

Supported: mCAT mCAT2 and higher
Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 95/399

IV. mCAT Kernel Reference mCAT 2.20

ThreadCreateEx

Function: Creates a thread for use by mCAT. The function will generate a descrip-

tor structure (THREAD) and put the thread to the sleeping state: it must

receive a signal to run. The new thread is created in the task space of
the current task. The difference between ThreadCreate and Thread-

CreateEx is that you can pass an optional argument with ThreadCreate-

Ex. This argument is passed to the created thread function as an argu-

ment.

Please note that the thread function MUST be declared using

the SYS_FDECL macro! If you don't use it, you may not re-

ceive the argument of the TLCS platform:

INTEGER SYS_FDECL threadfunction(void *arg)

C-Prototype: THREAD *ThreadCreateEx (INTEGER (*start)(), long stacksize, UNSIGNED priority,

void* args);

Arguments: start Pointer to start of thread code (label start)
stacksize Required size of stack in bytes. Suggested value: 1024
priority Starting priority of thread
args Pointer passed to the thread function as an argument

Returns: Pointer Pointer to the thread descriptor or NULL if call fails

Supported: mCAT mCAT2.10-R00168 and higher
Hardware All

Comments:

96/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

ThreadKill

Function: Deletes a thread and all of its child threads. Stops operation and frees

memory used for stack and descriptor.
C-Prototype: void ThreadKill (THREAD *thread);
Arguments: thread Pointer to thread descriptor. Assigned to thread by Thread-

Create
Returns: none

Supported: mCAT All versions
Hardware All

Comments:

ThreadSuspend

Function: Suspends a thread. The thread will ignore all signals until it is resumed.

C-Prototype: void ThreadSuspend (THREAD *thread);
Arguments: thread Pointer to thread descriptor. Assigned to thread by Thread-

Create
Returns: none

Supported: mCAT All versions
Hardware All

Comments:

ThreadResume

Function: Will remove the suspended state. The thread will be able to receive sig-

nals again and if it was ready or running before it was put into suspend

state, it will be inserted into the ready list again, too. All signals and pos-

sible timeouts are lost.
C-Prototype: void ThreadResume (THREAD *thread);
Arguments: thread Pointer to thread descriptor. Assigned to thread by Thread-

Create
Returns: none

Supported: mCAT All versions
Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 97/399

IV. mCAT Kernel Reference mCAT 2.20

ThreadSetPrio

Function: A new priority is assigned to the thread. If it is in the list of ready threads,

it will be removed and re-inserted at the new priority. If the thread is sus-

pended or sleeping, only the priority will be changed.
C-Prototype: void ThreadSetPrio (THREAD *thread, UNSIGNED prio, INTEGER

fixed);
Arguments: thread Pointer to thread descriptor. Assigned to thread by Thread-

Create
prio New priority.

fixed If fixed is true, the thread is set in fixed priority mode at pri-

ority prio. The Priority can not be boosted by a ThreadSig-

nal or by receiving a higher priority message.
Returns: none

Supported: mCAT All versions
Hardware All

Comments:

ThreadGetPrio

Function: Returns the current priority of the thread.

C-Prototype: UNSIGNED ThreadGetPrio(THREAD *thread);
Arguments: thread Pointer to thread descriptor. Assigned to thread by Thread-

Create
Returns: The current priority of the thread.

Supported: mCAT All versions
Hardware All

Comments:

98/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

ThreadGetState

Function: Returns information about the thread.

C-Prototype: INTEGER ThreadGetState (THREAD *thread);
Arguments: thread Pointer to thread descriptor. Assigned to thread by Thread-

Create
Returns: retval retval & THREAD_SUSPENDED

retval & THREAD_DELAYED

retval & THREAD_FIXED_PRIO

retval & THREAD_IN_TQUE

retval & THREAD_READY
Supported: mCAT All versions

Hardware All

Comments: THREAD_SUSPENDED The Thread is suspended

THREAD_DELAYED The Thread is waiting inside a ThreadDelay

call for the timeout to elapse
THREAD_FIXED_PRIO The Thread is running at a fixed priority

THREAD_IN_TQUE The Thread is sleeping (THREAD_READY is

NOT set) and timeout is not 0. The Thread is

in the timeout queue.
THREAD_ READY Thread is in the Thread list, ready to run.

This is the READY STATE

© 2008 mocom software GmbH & Co KG 99/399

IV. mCAT Kernel Reference mCAT 2.20

ThreadSlice

Function: If there's at least one other thread in the ready list whose priority is equal

to that of the running thread, the next one will become ready instead.
C-Prototype: void ThreadSlice (void);
Arguments: None

Returns: None

Supported: mCAT All versions up to 2.08. Not available in later releases.
Hardware All

Comments:
This call should not be used anymore. It is included here for

completness only. This call will not be supported in mCAT 2.1

and higher.

ThreadSleep

Function: The running thread is put to the sleeping state and the next one in the

ready list gets the processor. The now sleeping thread will be waken up

by a signal send to it. If ms is not zero, the sleeping thread will be sig-

nalled after ms milliseconds. The function is used by mCAT message

passing (MsgWait).
C-Prototype: INTEGER ThreadSleep (UINT32 ms);
Arguments: ms Milliseconds to being signalled. Zero for infinite sleep. This

parameter is not supported in mCAT Versions lower than

2.06. With mCAT 2.10-R00168 use the macro

SYS_WAIT_INFINITE to signal an infinite wait instead of

“0”.
Returns: Error Code SYS_ERR_OK The thread was successfully sig-

naled
SYS_ERR_TIME_OUT The timeout elapsed befor a sig-

nal was received
Supported: mCAT Timeout supported with 2.06 and later

Error codes supported with 2.07 and later
Hardware All

Comments: Please check the alternate function ThreadSleepQueued for more op-

tions!

100/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

Figure 1 Shows the control flow inside a ThreadSleep call. First, the signal counter is cleared

and the return code is preset to SYS_ERR_OK. Then, if a timeout is requested, the thread is

placed into the timeout queue (a background timer keeps control over the timeout queue).

Then the control over the CPU is given up. If a signal is received (the thread maybe signaled

by the timeout timer process or by another thread), the thread will get in control at exactly

the point where it gave it up earlier.

© 2008 mocom software GmbH & Co KG 101/399

Figure 10: ThreadSleep

IV. mCAT Kernel Reference mCAT 2.20

ThreadSleepQueued

Function: This function is a derivative of “ThreadSleep”. If a function is signaled by

use of ThreadSignal before the signaled thread entered ThreadSleep(),

the signal is lost.

With ThreadSleepQueued, the incoming signals are counted (“queued”)

and you have now two more alternatives:

1. ThreadSleepQueued (tout, TRUE)

The signal(s) are no longer lost. When you enter ThreadSleepQueued

and there is already a signal pending, your current thread will return im-

mediately – it will NOT sleep! The signal queue is flushed (the counter

set to 0) and other signals lost.

2. ThreadSleepQueued (tout, FALSE)

Again: When you enter ThreadSleepQueued and there is already a sig-

nal pending, the function will be terminated immediately and returns to

the calling program. However, the signal queue is not flushed. The sig-

nal is dequeued (counter is decremented).
C-Prototype: INTEGER ThreadSleepQueued (UINT32 ms, INTEGER flush);
Arguments: ms Milliseconds to being signalled. Zero for infinite sleep. This

parameter is not supported in mCAT versions lower than

2.06. With mCAT 2.10-R00168 use the macro

SYS_WAIT_INFINITE to signal an infinite wait instead of

“0”.
flush TRUE: flush signal queue before leaving

ThreadSleepQueued
FALSE: do NOT flush signal queue before

leaving ThreadSleepQueued
Returns: Error Code SYS_ERR_OK The thread was successfully sig-

nalled
SYS_ERR_TIME_OUT The timeout elapsed before a sig-

nal was received
Supported: mCAT mCAT 2.09 and later

Hardware All

Comments:

102/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

Figure 2 Shows the control flow of a ThreadSleepQueued call. If no signal is pending, it just

branches to enter the std. ThreadSleep call. The difference to ThreadSleep is only important

if there are pending signals! Depending on the value of argument flush, the signal counter is

cleared or just decremented.

Anyway, the control returns to the calling thread immediately.

© 2008 mocom software GmbH & Co KG 103/399

Figure 11: ThreadSleepQueued

IV. mCAT Kernel Reference mCAT 2.20

ThreadDelay

Function: ThreadDelay works the same way ThreadSleep does but with one little

difference: While the process is in a DELAY state, it will accept no

signals (by ThreadSignal or MsgSend) except the internal timeout

expired. This allows a thread to sleep for a defined delay without

unexpected interruption.
C-Prototype: void ThreadDelay (UINT32 ms);
Arguments: ms Milliseconds to being signalled. Zero for infinite sleep.

Please note that your thread will NEVER wakeup again if

you call this function with ms = SYS_WAIT_INFINITE.
Returns: None
Supported: mCAT All versions

Hardware All

Comments:

ThreadSignal

Function: Puts a thread into the ready list (after ThreadCreate or Thread-

Sleep) using the priority given as an argument or with no change in

priority if this parameter is zero. If the thread is already ready and

the current priority of the thread is lower than the new priority, the

threads priority is boosted to the new value.
C-Prototype: void ThreadSignal (THREAD *thread, UNSIGNED prio);
Arguments: thread Pointer to thread descriptor. Assigned to thread by Thread-

Create
prio New priority or zero for no change.

Returns: none

Supported: mCAT All versions
Hardware All

Comments:

104/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

Legend:

IN: entry point of a

ThreadSignal call.

fixed prio: Is the thread

in fixed priority

mode? This mode

can be set using

TreadSetPriority()

only.

priority: The current pri-

ority of the thread.

READY: A thread is

READY if it is in the

list of ready threads.

INSERT: Insert a thread

into the READY list

REMOVE: Remove a

thread from READY

list

TopOfList: The thread

with the highest pri-

ority is always

“TopOfList”.

SWITCH: Perform a

thread-switch: Make

new thread the run-

ning thread.

© 2008 mocom software GmbH & Co KG 105/399

Figure 12: ThreadSignal
Object 1

IV. mCAT Kernel Reference mCAT 2.20

ThreadProtect

Function: This function protects multitasking/multithreading. This call is used be-

fore entering a critical section of code that must not be interrupted by

other Tasks / Threads.
C-Prototype: void ThreadProtect (void);
Arguments: None

Returns: None

Supported: mCAT All versions
Hardware All

Comments: For compatibility with mCAT 1.xx the macros Protect and UnProtect are

provided.

#define Protect() ThreadProtect()

ThreadUnProtect

Function: Ends the critical section entered with ThreadProtect. With versions prio

to 2.09, ThreadUnProtect() unprotects multitasking/multithreading uncon-

ditionally. With versions below 2.09, UnProtect re-enables multithreading

unconditionally. With 2.09, an internal counter is maintained to be sure

that UnProtect re-enables multithreading only if it was called as often as

Protect. This was introduced to allow nested calls to Protect/UnProtect!
C-Prototype: void ThreadUnProtect (void);
Arguments: None

Returns: None

Supported: mCAT All versions
Hardware All

Comments: For compatibility with mCAT 1.xx the macros Protect and UnProtect are

provided.

#define UnProtect() ThreadUnProtect()

106/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

ThreadCreateKrnl

Function: Creates a thread for use by mCAT. The function will generate a descrip-

tor structure (THREAD) and put the thread to the sleeping state: it must

receive a signal to run. The new thread is created in the task space of
the kernel task instead of the task space of the current task. This

call can be used to create threads without a task. Usually this call is used

to create background threads for use inside of libraries or interrupt

drivers.
C-Prototype: THREAD *ThreadCreateKrnl (INTEGER (*start)(), long stacksize, UNSIGNED priori-

ty, void* args);

Arguments: start Pointer to start of thread code (label start)
stacksize Required size of stack in bytes. Suggested value: 200
priority Starting priority of thread
args Pointer passed to the thread function as an argument

Returns: Pointer Pointer to the thread descriptor or NULL if call fails

Supported: mCAT mCAT2.09 and higher
Hardware All

Comments:

Example:

typedef struct {
UINT32 delay;
UINT8 *out;

} ThreadArgs;

INTEGER MyThread (ThreadArgs *args)
{

while(args) {
ThreadDelay(args->delay); // sleep configured time
*out = ~(*out); // invert value .. just to do some-

thing
}

}

...
ThreadArgs args;
THREAD *thread;
args.delay = 100; args.out = (UINT8 *) 0xffffff; // some arguments
thread = ThreadCreateKrnl(MyThread,400,128,&args);
if (thread) {

ThreadSignal(thread,128);
....

© 2008 mocom software GmbH & Co KG 107/399

IV. mCAT Kernel Reference mCAT 2.20

ThreadSetHandler

Function: The ThreadSetHandler function is passed the address of a function

(func) to be called when the program terminates. Successive calls to

ThreadSetHandler create a register of functions that are executed in

LIFO (last-in-first-out) order. The functions passed to ThreadSetHandler

take the argument args as a parameters. ThreadSetHandler uses the

heap to hold the register of functions. Thus, the number of functions that

can be registered is limited only by heap memory.
C-Prototype: void *ThreadSetHandler (INTEGER type, void (*func)(), void* args);

Arguments: type Selects the type of handler. Currently only exit handlers are

supported. Therefore set this argument to

KRNL_HDL_TYPE_ATEXIT
func Function to be called
args Optional argument for func()

Returns: Pointer Pointer to an internal data structure on success or NULL if

call fails
Supported: mCAT MCAT2.10 R00013 and higher

Hardware All

Comments: This function is used to implement std. ANSI-C function atexit().

void __cdecl exit_func (char *args)
{

WrStr(“atexit: “);
WrStr(args);
WrLn();

}

void TaskMain()
{

ThreadSetHandler(KRNL_HDL_TYPE_ATEXIT, exit_func, “task deleted”);
TaskDelete(Self);

}

Output:

2+>init 402000
atexit: task deleted
2+>

108/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

4. mCAT Message Passing

4.1. The Concept of Message Passing

A message is a data structure that is declared and filled by the sender. It is send to the re-

ceivers message queue. There is no real data transfer happening when a message is send,

instead, the receiving task is send a signal (see ThreadSignal) with a priority attached to it.

If the receiving task is waiting for a message, it is signaled and its priority is set to the priority

of the message received. If the receiver is not sleeping, its priority is boosted to the priority

of the message to prevent an effect know as priority inversion.

Pointers to the message are put into the receivers queue which actually is just a list of mes-

sage pointers sorted by priority.

To differentiate between messages of various origins, a message type code (msg.type) is

provided by the server task. A client can query the type code to request a defined functionali-

ty.

mCAT 2 supports multiple message queues. A separate queue can be created for a specific

type code only. All messages that do not have a dedicated queue are queued in the default

queue (queueid = 0). Separate queues can make life easier sometimes.

4.2. Relation with other mCAT Concepts

The functions of the MSG (message) group are closely related to the TASK group. They

build the fundamental operating mechanism for mCAT.

© 2008 mocom software GmbH & Co KG 109/399

IV. mCAT Kernel Reference mCAT 2.20

4.3. The MSGID & MSG Data Structures

Be aware that this data structure is documented for completeness and reference

only! It should not be accessed directly! This structure is subject of change without

notification in both size and structure!

typedef struct {
UINT32 next; /* internal link */
UINT32 link; /* reserved */
UINT32 name; /* pointer to name */
INTEGER (*cnvt)(); /* reserved for future use */
UNSIGNED node; /* node information, currently not used

 With mCAT 210T00106 0 is defined and
set for local MSGID's */

INTEGER hdl; /* task / interrupt ident of server */
UINT32 id; /* type stored in the message header */

} MSGID;

An application message can be formed using the mCAT message header “MSG”.
typedef struct {

UINT32 right; /* internal link */
UINT32 left; /* internal link */
UINT16 len; /* length over all */
UINT32 type; /* “id” from MSGID structure */
UINT16 net; /* internal routing information */
INT16 src; /* requesters task / interrupt ident */
UINT8 prio; /* priority requester->server */
UINT8 reply; /* priority server->requester */
UINT16 error; /* error code */

} MSG;

A simple example:
typedef struct {

MSG hdr; /* the std. mCAT message header */
INT32 part_counter; /* some application data */

} MyMSG;

You can now send and receive messages of type MyMSG. Where ever “MSG *” is used as

an argument to a kernel function, you can now use your own message:
MyMSG report;
MsgSendRequest(&report.hdr,Self,ReportId,200,200);

110/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

4.4. Messages: How to?

1. Create a C-Header file (“mymsges.h”)

• Design and include your message structure(s).
typedef struct {

MSG hdr; /* the std. mCAT message header */
UINT32 part_counter; /* some application data */

} MyMSG;

• name your message
#define MyMSGID “my/part_counter”

2. Write the server

• Include “mymsges.h”

• Use MsgIdCreate() to register the MSGID
my_msg_id = MsgIdCreate (Self, MyMSGID, NULL);

• Write the code to handle the message

3. Write the client code

• Include “mymsges.h”

• Use MsgIdQuery() to query for the server
my_msg_id = MsgIdQuery (MyMSGID);

• Write the code to send requests to the server

4.5. Flow Charts

© 2008 mocom software GmbH & Co KG 111/399

IV. mCAT Kernel Reference mCAT 2.20

Figure 4 Shows the control flow inside a

MsgWait call. After selecting the re-

quested queue MsgWait checks if there

is at least one message pending.

If so, it fetches the message from the

queue and sets the current thread's pri-

ority to the message priority and returns.

If not, the current thread is send to

sleep. It will be signaled again (wake up)

if a timeout occurs, the thread is explicit-

ly signaled from another thread or im-

plicitly signaled by a MsgSend type call

(see Figure 5, page 26). No matter why

the Thread was signaled, MsgWait then

tries to fetch the most recent message

from the queue. If there is a message,

MsgWait returns the pointer to this mes-

sage. If not it returns NULL.

112/399 © 2008 mocom software GmbH & Co KG

Figure 13: MsgWait

mCAT 2.20 IV. mCAT Kernel Reference

Figure 5 Shows the control flow of a MsgSend type call (MsgSend, MsgSendReply, or Ms-

gSendRequest). After selecting the destination queue, the flow is different for tasks and in-

terrupt drivers.

If the destination is a task, the message is inserted into the tasks message queue and the

associated thread is signalled. This is what we called an implicit signal. This is the signal that

wakes up a sleeping thread inside a MsgWait call (See Figure 4, page 25).

If the destination is an interrupt driver and the version of mCAT is below 2.08, the message

is inserted into the interrupt drivers message queue and the interrupt drivers wakeup func-

tion is called (if present) to inform the driver about the new message (PASSMSG=NO).

© 2008 mocom software GmbH & Co KG 113/399

Figure 14: MsgSend

IV. mCAT Kernel Reference mCAT 2.20

For mCAT 2.08 or later, it is also possible to use a option called PASSMSG. In this case

wakeup is called first with the message as an argument. If wakeup returns the message

pointer, the message will be inserted into the queue, if it returns NULL it will not. See chapter

5 for more information.

Because PASSMSG=YES has some advantages, it is the preferred methodology. On other

platforms than the TLCS platform, PASSMSG=YES is the only option available!

114/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

4.6. Function Reference

MsgIdCreate

Function: To register a new message type, mCAT has to be informed about the

type name and will in turn assign a handle or type id that is called msgid.

The name of the message can contain any standard ASCII character

and there is no length restriction (however, it is recommended not to use

strings longer than 32 byte). Please don't start your names with "mCAT/"

as system messages use this prefix. It is a good practice to use a per-

sonal prefix for your applications (“my-prefix/my-app/do-this-and-that”).
C-Prototype: MSGID *MsgIdCreate (INTEGER self, char *name, MSGID *msgid);
Arguments: self ID of creating task

name User defined name
msgid If NULL, MSGID is allocated automatically

If NOT NULL, "msgid" is used to store information. First

use is preferred. This argument will not be supported in fu-

ture versions (> 2.09).
Returns: Pointer Pointer to message id structure

Supported: mCAT All versions
Hardware All

Comments:

MsgIdQuery

Function: Use MsgIdQuery to find out the message id (msgid) of an already

defined message type by name. Usually the client task will need to

know the msgid of the server-defined message type.
C-Prototype: MSGID MsgIdQuery (char *name)
Arguments: name Name to be searched for.

Returns: Pointer Pointer to message id, NULL if name is not found.

Supported: mCAT All versions
Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 115/399

IV. mCAT Kernel Reference mCAT 2.20

MsgSendRequest

Function: A message is sent as a request to a task or interrupt handler,

awaiting a reply. The message header is filled automatically.
C-Prototype: INTEGER MsgSendRequest (MSG *msg, INTEGER self, MSGID *ms-

gid, UNSIGNED prio, UNSIGNED reply);
Arguments: msg Pointer to message to be sent

self Task id of sending task (self)
msgid Pointer to message id structure
prio Priority assigned to this message. Value between 1 (low)

and 255.
reply Priority requested for reply. The receiver usually moves this

value to the priority field of the reply message (automatical-

ly when using MsgSendReply). Special values for "reply":

0: This message IS a reply! Must not be used in a

MsgSendRequest call!

FFh: Should not be used.
Returns: Error Code SYS_ERR_OK Ok

SYS_ERR_NO_TASK Destination task not existent

SYS_ERR_NO_TARGET Destination interrupt handler

not existent
Supported: mCAT All versions

Hardware All

Comments:

116/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

MsgSendReply

Function: A msg is replied to the requesting task. The major duty of Ms-

gSendReply is to copy the field msg->reply of the message header

to msg->prio and then to clear msg->reply. Then the msg is sent to

msg->src. The own taskid “Self” is used to prevent an infinite han-

dling of a message if msg->src is equal to Self!
C-Prototype: INTEGER MsgSendReply (MSG *msg, INTEGER self, UNSIGNED er-

ror);
Arguments: msg Pointer to reply message

self Own taskid, necessary to prevent deadlocks
error Reply code sent to requester:

ACK Reply ok

NAK Error (cannot interpret message).

Will be filled into msg->error. Beside of ACK and NAK, a

user defined error code can be sent. With mCAT 2.00 the

error field is 16-Bit.
Returns: Error

Code

SYS_ERR_OK Ok

SYS_ERR_NO_TASK Destination task not existent

SYS_ERR_NO_TARGET Destination interrupt handler

not existent
Supported: mCAT All versions

Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 117/399

IV. mCAT Kernel Reference mCAT 2.20

MsgSend

Function: Send a message to task taskid. The user is responsible for filling the

message header.
C-Prototype: INTEGER MsgSend (INTEGER taskid, MSG *msg);
Arguments: taskid ID code of destination task.

msg Pointer to the message to be sent.

Returns: Error Code SYS_ERR_OK Ok

SYS_ERR_NO_TASK Destination task not existent

SYS_ERR_NO_TARGET Destination interrupt handler

not existent
Supported: mCAT All versions

Hardware All

Comments:

MsgPost

Function: Send a message to task taskid just as with MsgSend however without is-

suing a signal to the destination task. This prevents task switching and

allows the source task to continue even if the message sent has a higher

priority than itself.
C-Prototype: INTEGER MsgPost (INTEGER taskid, MSG *msg);
Arguments: taskid ID code of destination task.

msg Pointer to the message to be posted.

Returns: SYS_ERR_OK Ok

SYS_ERR_NO_TASK Destination task not existent

SYS_ERR_NO_TARGET Destination interrupt handler

not existent
Supported: mCAT All versions

Hardware All

Comments:

118/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

MsgWait

Function: Put yourself to the sleeping state until a message arrives at queue hdl or

the timeout timeout has passed. A call to MsgWait effectively stops task

execution and lets other tasks run until the desired message is received.

If a message with sufficient priority is waiting at the queue, task execu-

tion continues. A timeout condition can be checked by testing the mes-

sage pointer to be equal to NULL.
C-Prototype: MSG *MsgWait (INTEGER hdl, UINT32 timeout);
Arguments: hdl Handle associated with the queue this call waits for. Zero if

this call waits for the default queue. A specific handle (as-

signed by MsgAddQueue) if we wait at a queue specialized

on one specific message type.
timeout Timeout length in milliseconds. INFINITE if no timeout.

This parameter is not supported in mCAT Versions lower

than 2.06. With mCAT 2.10-R00168 and higher use

the macro SYS_WAIT_INFINITE to signal an infinite

wait instead of “0” in previous versions.
Returns: Pointer Pointer to incoming message OR NULL if the desired

queue doesn't exist OR if timeout elapsed.
Supported: mCAT All versions

Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 119/399

IV. mCAT Kernel Reference mCAT 2.20

MsgUpdate

Function: A message is sent as a request to a task or interrupt handler,

awaiting a reply. The reply will NOT be send to the tasks queues

as usual but send to a hidden queue private to the current thread.

After sending the request, MsgUpdate waits for the reply in front

of the hidden queue.

This function provides a totally easy and save method to send and

receive a message in a client application with a single function call.

The message header is filled automatically. The priority of the call-

ing thread is not changed, the request is send with the current

threads priority.

You should be very careful using a timeout with this function. A

timeout will signal a fatal system failure and should be handled like

this!
C-Prototype: MSG *MsgUpdate (MSG *msg, MSGID *msgid, UINT32 timeout);
Arguments: msg Pointer to message to be sent

msgid Pointer to message id structure
timeout Timeout length in milliseconds. SYS_WAIT_INFINITE to

wait infinite.
Returns: MSG * Pointer to the replied message or NULL if TIMEOUT

or fail
Supported: mCAT 2.10 and higher

Hardware All

Comments:
This function can not be used for BITBUS master applications

– the BITBUS driver can not handle the hidden queues yet.

Be sure not to send a message to your own task when your

current thread is intended to handle those types of messages!

A DEADLOCK will occur!

Must not be used inside interrupt handlers!

120/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

MsgGet

Function: Read a message from queue hdl. If “hdl” is zero, we read from the de-

fault queue. This is a MsgWait without timeout and total freedom to ac-

cess any task or interrupt driver (because taskid is given). This call is

needed inside an interrupt driver to fetch a message from its queues.
C-Prototype: MSG *MsgGet (INTEGER taskid, INTEGER hdl);
Arguments: taskid Own taskid

hdl Handle associated with the queue this call queries. Zero if

this call goes to the default queue. A specific handle (as-

signed by MsgAddQueue) if we read from a queue special-

ized on one specific message type.
Returns: Pointer Pointer to desired message or NULL if no message avail-

able.
Supported: mCAT All versions

Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 121/399

IV. mCAT Kernel Reference mCAT 2.20

MsgAddQueue

Function: If you have created your tasks with the queues parameter greater than 1,

multiple queues are allowed. To use them, the corresponding message

types (MSGID) to be handled by these queues must be defined. This is

the task of MsgAddQueue. It returns a queue handle associated with a

specific message type. This handle is used in the MsgWait and MsgGet

functions.
C-Prototype: INTEGER MsgAddQueue (INTEGER taskid, UINT32 msgid);
Arguments: taskid Own taskid

msgid Message type MSGID to associate with the queue. Msgid

is the type code stored in msg.type / msgid.id. To get it,

use MsgIdQuery.
Returns: Handle or zero for error (no more queues available, check

TaskCreate).
Supported: mCAT All versions

Hardware All

Comments:

MsgDelQueue

Function: Free the queue specified by hdl. All waiting requests are sent back to

their owners (error = NAK), replies are ignored. A waiting thread is sig-

nalled at the current priority level. MsgWait will return 0 (not supported).

This function is only used for debugging.
C-Prototype: INTEGER MsgDelQueue (INTEGER taskid, INTEGER hdl);
Arguments: taskid Own taskid

hdl Queue handle

Returns: Error Code SYS_ERR_OK
Supported: mCAT All versions

Hardware All

Comments:

122/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

5. mCAT Interrupts and QuickISR Interrupts

5.1. The Concept of Interrupt Drivers

To understand an mCAT interrupt driver you have to learn about three functions and one

data structure. The functions are:

1. “service”: The interrupt service routine

2. “wakeup”: The message service routine

3. “go”: The driver enable call

5.1.1. The WorkSpace Data Structure

The interrupt driver workspace structure is needed to store data needed to manage the inter-

rupt driver. For example a pointer to the private interrupt stack is included as well as the

queues to store messages send to the interrupt driver. The interrupts workspace is compara-

ble to a tasks TASK structure.

All service routines (service, wakeup and go) are called with the WS pointer as argument.

This may help to distinguish between several interrupt sources handled by the same code as

well as it helps to write drivers that do not need “static” variables in RAM. How does this

work?

If you add your variables to the end of a WS structure like this
typedef struct {

WS ws;
long counter;

} MyWS;

you can allocate the entire structure by just calling IntInstall() with the size of your structure

(sizeof(MyWS)) instead of calling it with (sizeof(WS)). Your variables are now in the dynami-

cally allocated RAM area and you must no longer worry where to place them. All mCAT

drivers are written in this way.

5.1.2. WS Data Structure on the TLCS platform

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification!

© 2008 mocom software GmbH & Co KG 123/399

IV. mCAT Kernel Reference mCAT 2.20

HOWEVER, THE SIZE OF THIS STRUCTURE WAS FIXED TO 4EH WITH ALL

mCAT UP TO 2.09!

typedef struct {
IMD imd; /* IMD */
int (*service)(); /* ASM-service call */
int (*notify)(); /* notify function */
int (*cservice)(); /* c-service call */
int (*wakeup)(); /* wakeup function */
int (*go)(); /* called after system boot */
word flags; /* flags field */
word quemax; /* number of queues (3) */
word quecnt; /* number of used queues */
QUEUE queue[3]; /* a interrupt driver can have 3 queues */
void *stack; /* interrupt stack pointer */
word intque; /* reserved for future use */
word wres; /* reserved for future use */
long lres; /* reserved for future use */

} WS;

5.1.3. WS Data Structure on non TLCS platforms

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification!

typedef struct __ws__ {
RTTI rtti; // runtime type identifier
IMD *imd; // pointer to module identifier
INTEGER (*service)(); // pointer to service routine
MSG * (*wakeup)(); // wakeup pointer
INTEGER (*go)(); // enable pointer
MQUEUEDESC *qd; // queues

} WS;

124/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

5.1.4. The “service” Function

service

Function: Interrupt service routine (ISR). Is called after an interrupt occurred. The

stack is the local interrupt stack created inside the IntInstall() call, inter-

rupts of same and lower levels are disabled. The pointer to the interrupts

workspace is passed. This function can be declared as “__adecl” with C-

Compiler version 4 or higher.

You may extend WS with your application specific data. Example:
typedef struct {

WS ws;
long product_count;

} MyWS;

void SYS_FDECL service (MyWS *ws)
{
}

You may call MsgGet() to retrieve a message or any “MsgSend” type

function to send a message to another interrupt driver or task.
C-Prototype: void SYS_FDECL service (WS *ws);
Arguments: ws Pointer to the allocated workspace

Returns: None

Supported: mCAT All versions
Hardware All

Comments:

5.1.5. The “wakeup” Function

For an interrupt driver at least “service” has to be implemented. A wakeup function is needed

to inform the driver if a message was received. This must be explained a bit more precisely.

First, let us classify interrupt drivers into the following basic classes:

1. periodic

2. input

3. output

It depends on the class of driver whether you need a wakeup function or not:

© 2008 mocom software GmbH & Co KG 125/399

IV. mCAT Kernel Reference mCAT 2.20

A periodic class interrupt driver receives an interrupt from the hardware once every time

slice. No software interaction is needed to make sure the next interrupt will be issued. Exam-

ple: A periodic timer interrupt. You need no wakeup function.

An input class interrupt driver receives an interrupt from the hardware when ever a data item

gets available. No software interaction is needed to make sure the next interrupt will be is-

sued after data is read. Example: A UART receiving characters. You need no wakeup func-

tion (but sometimes you may use it anyway, because it can make a complex design simpler)!

An output class interrupt driver sends data to a hardware device and receives an interrupt in

turn to output the next unit of data. Example: Sending a string to a serial port. When all data

is send, the final interrupt can not be served anymore, it is lost. Sometimes we speak of a

sleeping state the driver is in. No other interrupt will occur until not another data unit is out-

put. But who shall do this? Right, it is the Wakeup() call. New data arrives and needs to be

handled. In our example, Wakeup() would output the first character of the new string. After

sending the first character a new interrupt would occur and the normal output mechanism

would handle the rest of the string. Wakeup() may look like this:
MSG *Wakeup(MYWS *ws, MSG *in)
{

if (ws->tx.sleeping) {
// ISR sleep state, start transmission
output_one_byte(ws,in->data[0]);
// save message as current under service
ws->tx.current_output_buffer = in; // message top be served
ws->tx.current_output_counter = 1; // first char already sent
// exit sleeping state
ws->tx.sleeping = FALSE;
in = NULL; // in is under service, return NULL!

} /* endif */

return in;
}

With mCAT 2.08 we introduced a new Option: PASSMSG mode for the wakeup function. If

enabled, the message is not enqueued but it is passed to the wakeup function as a second

argument. If it can be handled by the wakeup function, wakeup returns NULL. If not, wakeup

returns the message – it will be queued in this case. This mode make things easier in some

cases. For the different control flows of wakeup function with and without PASSMODE op-

tion, please refer to Figure 5: Loading a SHX-File from the ComamndLline, page 26.

126/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

wakeup

Function: Do the first data output operation to start the interrupt procedure. Be

aware that interrupts are disabled up to and including level 4 while calling

wakeup. Do not re-enable interrupts and keep wakeup as short and fast

as possible.
C-Prototype: MSG * SYS_FDECL wakeup (WS *ws, MSG *in); (PASSMSG mode)

void wakeup (WS *ws); (std. mode)
Arguments: ws The workspace pointer

in Pointer to the message just received. PASSMSG mode

only. If the message can be handled immediately inside

wakeup, return NULL. if it can not be handled return the

message – it will be queued then! This will reduce the need

to call “MsgGet” in some cases and speed up things a bit.

However, be careful not to handle messages in wakeup

while others still waiting in the queue (MsgGet).
Returns: None

Supported: mCAT All versions. PASSMSG mode is supported in mCAT 2.08

or higher.
Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 127/399

IV. mCAT Kernel Reference mCAT 2.20

5.1.6. The “go” Function

go

Function: Called after system initialisation, just before the system enables inter-

rupts. Used to finally enable hardware.
C-Prototype: void go (WS *ws);
Arguments: ws The workspace pointer

Returns: None

Supported: mCAT All versions.
Hardware All

Comments:

5.1.7. The “notify” Function

The notify function has been supported in all mCAT Versions up to and including 2.09. It will

not be supported in 2.1 or higher. Do not write drivers using this obsolete technology.

5.1.8. Important Note

Within an interrupt driver the use of ThreadSleep, ThreadSleepQueued, Thread-

Delay and MsgWait is strictly prohibited.

5.2. TLCS900 Interrupt Level

With mCAT 2.0x within the kernel only interrupts up to level 4 (4 included) are disabled in

critical sections. MCAT interrupts must not use higher levels than 4.

LEVEL 6 should not be used for interrupt service routines (ISR) at all - this level is reserved

for DMA operation. That is because the HDMA's of the TLCS900 H-CORE CPU's can be

stopped by a DI operation. They operate always on level 6! To guarantee best DMA perfor-

mance, disabling of level 6 must be minimized if it is necessary at all.

LEVEL 5 is reserved for QuickISR Interrupts. QuickISR MUST not use any other level!

128/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

5.3. QuickISR

QuickISR's are used for quick, „overhead-free“ interrupt service. Typical applications for

those QuickISRs are counter overflow counters in software etc. - short, high frequency inter-

rupt handlers. A QuickISR can communicate with other interrupt handlers or mCAT Tasks

via shared memory only! A QuickISR must never call a MsgSend... or ThreadSignal system

call - or any other system call that may cause a task/thread switch.

5.3.1. QuickISR on Toshiba TLCS900 Platforms (mCAT 2.10)

Best language to write QuickISR's is assembler, because C will use the stack to much. If a

QuickISR handler is written in C - the installation of an own stack frame is recommended!

It is possible to pass a previously defined arguments with the QucikISR call. In that case as-

sembly is required anyway, because C cannot handle arguments to interrupt functions.

The QuickISR is attached using the new IntSetTrap call. Use IntSetTrap for QuickISR's and

non-maskable interrupts only (SWIx, NMI, WatchDog).

It is forbidden to attach an ISR with LEVEL < 5 using IntSetTrap. Do not load the stack within

a QuickISR with more than 8 bytes (2 32-bit values)

The two examples show a simple overflow counter. Example 1 uses a fixed memory location

for the overflow counter. Example 2 uses a pointer to this counter passed as an argument!
overflow_counter dl 1

quick_1:
push xwa ; save xwa
ld xwa,1 ; increment counter
add (overflow_counter),xwa
pop xwa
reti ; MUST be a RETI!

quick_2:
push xwa ; save xwa
ld xwa,(xsp+4) ; get pointer to argument
ld xwa,(xwa) ; get pointer to counter
addw (xwa+),1 ; increment LSW
adcw (xwa),0 ; add carry to MSW
pop xwa ; restore xwa
add xsp,4 ; remove argument pointer
reti ; MUST be a RETI!

© 2008 mocom software GmbH & Co KG 129/399

IV. mCAT Kernel Reference mCAT 2.20

5.3.2. QuickISR on ARM7 platforms (mCAT 2.10-R00168)

The major difference to the TLCS900 platforms, mCAT 2.10-R00168 does not need assem-

bly-level programming for QucikISR's. The handler will look like this:
UINT32 counter;
void MyQickIsr(UINT32 *counter)
{

*counter = *counter + 1;
}

...
IntSetTrap(INT_LINE_3,MyQuickIsr,&counter);
IntEnable(INT_TIMER_0,SYS_INT_LEVEL_5);
...

5.4. Relation with other mCAT concepts

Interrupt Drivers and Tasks are the major module types. From the outside, the interface is

message passing and for a user it should not make any difference whether a service is im-

plemented as a task or as an interrupt driver.

Interrupt drivers are used if the response time needed is below 5ms.

5.5. Function reference

The INT group offers functions to install and control interrupt handlers.

These functions are only supported on TLCS900 hardware.

130/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

IntInstall

Function: Installs a handler for hardware interrupts. The location of the workspace

is assigned by mCAT, only the size must be specified.
C-Prototype: INT *IntInstall (INTEGER intid, INTEGER (*service)(), INTEGER

(*cservice)(), INTEGER (*wakeup)(), INTEGER (*notify)(), long stack-

size, long wssize);
Arguments: intid Interrupt identifier

service Pointer to local function service. Used for assembly lan-

guage code. Not supported on non TLCS platforms.
cservice Pointer to local function cservice. Used for C language

code. If supplied, set service = NULL.
wakeup Pointer to function wakeup or NULL if no wakeup function

is needed. To activate “PASSMSG” wakeup, use the marco

“PASSMSG()” to pass wakeup.
notify Pointer to function notify or NULL if no notify function is

needed. “notify” functions are obsolete and should no

longer be used.
stacksize Size of private stack (not supported on all platforms)
wssize Size of private workspace. At least sizeof(WS)

Returns: Pointer to Int workspace

Supported: mCAT All versions. With mCAT2.08 the new “PASSMSG” wakeup

call is available (see “wakeup”).
Hardware All

Comments: IntInstall with a “PASSMSG” type wakeup function:

ws = IntInstall(IntLine4, // Interrupt line 4
NULL, // no assembler ISR
cisr, // C ISR!
PASSMSG(cwakeup), // wakeup function
NULL, // no “notify”
0x100, // stacksize
sizeof(WS) // minimum size of WS

);
ws->imd = &my_imd; // insert link to IMD

© 2008 mocom software GmbH & Co KG 131/399

IV. mCAT Kernel Reference mCAT 2.20

IntSetTrap

Function: Attaches the ISR „isr“ to interrupt „intid“ (see appendix a for a list of valid

intid's). If „arg“ is not NULL, it will be passed on the top of stack to the

ISR, else the stack is empty on ISR entry. If there was already an ISR

attached, the pointer to the previously used ISR is returned.
C-Prototype: void *IntSetTrap(INTEGER intid, void *isr, void *arg)
Arguments: intid Interrupt identifier

isr pointer to ISR

arg pointer to optional argument or NULL
Returns: previously attached ISR or NULL

Supported: mCAT mCAT 2.06 and higher
Hardware All

Comments:

IntEnable

Function: Enables the specified interrupt source (TLCS900 INTE'xx' register)

C-Prototype: INTEGER IntEnable (INTEGER intid);
Arguments: intid Interrupt identifier

Returns: Error Code SYS_ERR_ILLEGAL_INT No valid interrupt number

Supported: mCAT All versions
Hardware All

Comments:

IntDisable

Function: Disables the specified interrupt source.

C-Prototype: INTEGER IntDisable (INTEGER intid);
Arguments: intid Interrupt identifier

Returns: Error Code SYS_ERR_ILLEGAL_INT No valid interrupt number

Supported: mCAT All versions
Hardware All

Comments:

132/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

IntSetLevel

Function: Sets the level of the specified interrupt

C-Prototype: INTEGER SetIntLevel (INTEGER intid, UNSIGNED level);
Arguments: intid Interrupt identifier

level Interrupt level

Returns: SYS_ERR_ILLEGAL_INT No valid interrupt

number

SYS_ERR_ILLEGAL_LEVEL No valid level number
Supported: mCAT All versions

Hardware All

Comments:

IntGetLevel

Function: Reads the level of the specified interrupt

C-Prototype: UNSIGNED IntGetLevel(INTEGER intid)
Arguments: intid Interrupt identifier

Returns: Interrupt level

Supported: mCAT All versions
Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 133/399

IV. mCAT Kernel Reference mCAT 2.20

IntIsPending

Function: Checks whether there is a pending interrupt for the specified handler.

C-Prototype: INTEGER IntIsPending (INTEGER intid, INTEGER *error);
Arguments: intid Interrupt identifier

error Pointer to error variable:

SYS_ERR_OK ok

SYS_ERR_ILLEGAL_INT No valid interrupt number
Returns: TRUE is interrupt is pending

Supported: mCAT All versions
Hardware All

Comments:

134/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

6. mCAT Shared Libraries

6.1. The Concept of Shared Libraries

6.1.1. What is a Shared Library

A shared library is a piece of code implementing a set of functions that are not linked with

the application at compile time but at runtime. Shared Libraries are helpful to reduce the

code space needed, because the same library can be used from different modules.

In contrast to a message based interface (client-server), a Shared Library is a synchronous

interface. It is not prepared to deal with multitasking. If you have a single resource to man-

age and concurrent access by several tasks you should not use Shared Libraries.

6.1.2. A Shared Library Call

The C-Runtime library (linked with every C-module) supports a small wrapper function called

“__exec()”. This call is the one and only entry to the shared library mechanism. All Shared Li-

brary calls are implemented as C-Macros in the form:

#define MyLibraryFunction(p1,p2,..,pn) __exec(0x40020l,p1,p2,..,pn)

The first number (here 0x40020l) is the Shared Library access code. It is a 32-Bit number

formed of:

libid << 2 fid << 2
31 16 15 0

“libid” is the libraries ordinal number assigned by “MIC”, the interface compiler. “fid” is the or-

dinal number of the function inside the Library “libid”.

6.1.3. Why Should I use “LOCAL” Structure?

MIC will presume that you will store all Library specific global variables into a special struc-

ture called “LOCAL”. This structure must be defined by the user (in the COMON/END-

COMON section of the LDF-File).

The advantage is that LOCAL will be automatically allocated at startup. You will not have the

need to worry where to place your globals at runtime. That way its role is a bit like WS in an

interrupt driver. Every function called gets a pointer to LOCAL as an argument.

© 2008 mocom software GmbH & Co KG 135/399

IV. mCAT Kernel Reference mCAT 2.20

6.2. Relation with other mCAT Concepts

All mCAT API-Functions of all modules (NVMEM, MEM, SERDRV, ...) including the kernel it-

self are implemented as Shared Library

6.3. The Library Descriptor

Be aware that this data structure is documented for completeness and reference

only! The structure should not be accessed directly! This structure is subject of

change without notification!

typedef struct {
IMD *imd; /* pointer to module IMD */
UNSIGNED libid; /* ordinal number of the library */
UNSIGNED calls; /* number of calls in jump table */
INTEGER (*func[1])(); /* jump table */

} LIB;

6.4. MIC & LDF-Files

The MIC (mocom interface compiler) is used to make Shared Library design easy. The li-

brary and all its functions are described in a so called LDF (LIBRARY DEFINITION FILE).

MIC generates all files needed (modules initialization, wrapper files, includes). You just have

to add your code and a makefile. For MIC and LDF file format please refer to “mCAT tools

Documentation”.

6.5. Function Reference

This group adds some fundamental functions to the kernel. Most functions deal with the

SHARED LIBRARY, the repository for all of mCATs code. The shared library can be extend-

ed by buying additional modules ore writing them yourself.

136/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

SysAddLib

Function: Installs a Shared Library (ShLib) with library number libid and a pointer

lib to a library descriptor. This call is used in module initialization code

generated by MIC.
C-Prototype: INTEGER SysAddLib (UNSIGNED libid, void *lib, void *local);
Arguments: libid the major number of the library to be installed

lib pointer to the library descriptor
local pointer to local memory for that library

Returns:
Supported: mCAT All versions

Hardware -/-

Comments:

SysGetLib

Function: Returns a pointer to a ShLib descriptor. May be used for status monitor-

ing or fast direct access to the functions.
C-Prototype: void *SysGetLib (UNSIGNED libid);
Arguments: libid the major number of the library to be installed
Returns: pointer to the library descriptor

Supported: mCAT All versions
Hardware -/-

Comments:

7. mCAT Trace & Debug Interface

7.1. Function Reference

Currently, trace functions are under development. For now, only the TraceWriteLog com-

mand is available.

© 2008 mocom software GmbH & Co KG 137/399

IV. mCAT Kernel Reference mCAT 2.20

TraceWriteLog

Function: This function is used to write a string into the bootlog. The bootlog is

used to document the boot process and runtime errors. It can be read

using the command “show” of the SYSMON monitor.

User modules are allowed to write to the bootlog file too. Please note

that strings are not copied to bootlog but just their references are saved.
C-Prototype: void TraceWriteLog (char *msg);
Arguments: msg Pointer to user ASCII-Z-string.

Returns: None

Supported: mCAT All versions
Hardware All

Comments: Strings send to the bootlog by TraceWriteLog shall:

- start with a cr-fl sequence followed by a single space (“\r\n ”)

- end without any further cr and/or lf

138/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

8. mCAT Modules and the IMD (Initial Module Descriptor)

8.1. The Module / IMD Concept

As we heard before, a module is a compiled and linked unit of executable code. There are

tasks with one or more threads, a kernel thread, an interrupt driver, a shared libary, just ini-

tialization code. A module can contain one, some or all of these concepts at a time. If a mod-

ule is placed in (FLASH) ROM, mCAT will find it at system startup time and call its TaskInit

function automatically.

An IMD (initial module descriptor) is needed in front of every module for automatic module

detection. This is a special data structure containing all information needed to start and

maintain the module.

Some of the information in the IMD is reserved for future use, some is used for task and in-

terrupt drivers only (stack, heap).

The important information in the header include:

• The name of the module

• The version (Format: “#.##”) of the module

• The time tag “build” (UNIX time). The tag will be inserted by the utility TAG.EXE after the

module was linked.

8.2. IMD Reference

typedef struct {
word pattern; /* aa55=AUTOSTART, 0055, ff55 */
void (*init)(); /* pointer to module init function */
void (*main)(); /* pointer to task main */
lword stack; /* stack size for this module */
lword heap; /* heap size (currently not supported) */
lword build; /* 32-Bit UNIX time stamp*/
byte priority; /* initial priority */
byte mode; /* mode, currently not used */
byte id; /* BITBUS function ID */
char version[5]; /* “X.XX” C-String */
char name[17]; /* “name” C-String */
word check; /* hash of “name” */

} IMD;

© 2008 mocom software GmbH & Co KG 139/399

IV. mCAT Kernel Reference mCAT 2.20

8.2.1. mCAT 2.10-R00168

With mCAT 2.10-R00168 the IMD was extended to hold more information. This includes the

memory layout and the reserved memory information. Both are retrieved and inserted into

the IMD by the S3PATCH tool used in every standard mCAT makefile.

typedef struct {
 UINT32 base; // start address
 UINT32 length; // length of a memory area
} AREADESC;

typedef PACKED_STRUCTURE struct {
UINT16 pattern; // aa55=AUTOSTART, 0055, ff55
INTEGER (*init)(); // pointer auf init funktion
INTEGER (*main)(); // pointer auf task main function
UINT32 stack; // stack size
UINT32 heap; // reserved
UINT32 build; // build time
UINT8 priority; // start prio
UINT8 mode; // mode
UINT8 id; // BITBUS FID
char version[5]; // "x.xx"
char name[17]; // "name"
UINT16 check; // checksum (name)
UINT16 exlen; // length of extended IMD from here on!
AREADESC rom; // rom address and length
AREADESC ram; // ram address and length
AREADESC romres; // reserved for rom address and length
AREADESC ramres; // reserved for ram address and length

} GNU_PACKED_STRUCTURE IMD;

140/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

SysGetImdPtr

Function: Returns a pointer to a tasks or shared libraries IMD structure. May be

used for status monitoring.
C-Prototype: IMD SysGetImdPtr (INTEGER cmd, INTEGER id);
Arguments: cmd SYS_GET_IMD_BY_LIBID (0)

SYS_GET_IMD_BY_ID (-1)

SYS_GET_IMD_BY_ACTIVE (-2)
id taskid / libid / intid

Returns: Pointer to task, interrupt driver or shared library IMD.

Supported: mCAT All versions, with mCAT2.10T00284 and later the three

commands are supported. Before that version, the function

returned the LIBIMD if cmd was 0 and the task/intid if it was

not 0. The new command SYS_GET_IMD_BY_ACTIVE re-

turns the IMD of the currently active task or interrupt driver,

even at boot time!
Hardware All

Comments:

8.3. INIT-Modules

8.3.1. What are INIT-Modules?

Init-Modules (aka Init) do not contain Task, Thread, Interrupt-Driver or Library creation code.

Usually a Init-Module contains a TaskInit() function only.

The purpose of this type of functions is to modify the system at startup or at first use. The

Function TaskInit() is executed once at system start.

Inits can be used very creatively. For example we use INITs to setup the EEPROM memory

to default values when a hardware is powered up for the first time. This SYSTEM INIT will

program the EEPROM and then mark the page it resides in for deletion. Finally, the INIT will

use SysReset() to issue a restart.

So after the first (successful) powerup, the EEPROM is set, the INIT is removed and the

hardware and software using the values in EEPROM is well initialized. For example, the BIT-

BUS parameters (speed, node address, message length and number of buffers) are set to

default (375kBit/s, 3, 255, 8).

© 2008 mocom software GmbH & Co KG 141/399

IV. mCAT Kernel Reference mCAT 2.20

Another idea would be an INIT that checks a given RAM area for a valid module. INITcan

than start the RAM based module by calling its TaskInit() function.

The use of the functions ThreadSleep, ThreadSleepQueued, ThreadDelay and

MsgWait is not allowed inside an INIT!

8.3.2. How to Write an INIT

The makefile is pretty straight forward. The important switches to CIMD are:
-init=Init Rename TaskInit to Init
-main=NULL We need no TaskMain
-initmodule We are composing a INIT module

here is the full source of makefile:
PROJECT = initdemo
TARGET = std_rom
CMD = -D$(CORE) -D$(HARD)
OBJFILES = imd.$(REL) $(PROJECT).$(REL)
INCFILES =

$(PROJECT).shx: $(OBJFILES)
$(MKLNK) $(TARGET) $(PROJECT) $(OBJFILES)
$(LD) $(PROJECT).LNK -o$(PROJECT).abs
$(CONVERT) $(PROJECT).abs $(OF) $(PROJECT).shx
$(S3PATCH) -l=$(PROJECT).map $(PROJECT).shx

$(PROJECT).$(REL): $(PROJECT).c $(INCFILES)
imd.$(REL): imd.c
imd.c: makefile

$(CIMD) -auto -init=Init -main=NULL -initmodule -version=1.01 "mCAT/Jus-
tAInit" imd.c

The C-Source is easy also pretty easy to understand:
/*
 * INITDEMO
 *
 * (c) 1999, 2004 mocom software GmbH & Co KG
 *
 * File: INITDEMO.C
 *
 * History:
 *
 * date version author comment
 * --

142/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

 * 08.04.1999 V1.00 VG created
 * 06.06.2004 V1.01 VG use CIMD, cross platform compatible
 * --
 */
#include <mcat.h>
#include <simpleio.h>
#include <nvmem.h>
#include <eeprom.h>

long const purge = 0x0000;

void Init (IMD *imd)
{
 /* a little menu */
 loop {
 /* write out menu */
 WrStr("\n\n\n");
 WrStr(" 1. START\n");
 WrStr(" 2. RESET\n");
 WrStr(" 3. REMOVE\n\n");
 WrStr(" YOUR CHOICE? ");

 /* wait for input, trigger watchdog meanwhile (TSM900 ONLY) */
 while (!kbhit()) {
#ifdef TSM_900
#include <t95c061.h>
 *P5 |= 0x04;
 *P5 &= 0xfb;
#endif
 } /* endif */

 /* get char and decide what to do */
 switch(RdChar()) {
 case '1':
 WrStr("START\n"); /* continue boot process, start mcat */
 return;

 case '2':
 WrStr("RESET\n"); /* reset system */
 SysReset();

 case '3':
 WrStr("REMOVE\n"); /* remove this little INITDEMO */

 FLASHWrite(imd,&purge,sizeof(purge));
 SysReset();

 default:
 WrStr("?\n"); /* UPS! */

 } /* endswitch */
 } /* endloop */
}

© 2008 mocom software GmbH & Co KG 143/399

IV. mCAT Kernel Reference mCAT 2.20

9. mCAT Miscellaneous System Functions

SysReset

Function: Forces a true hardware reset using the watchdog reset mechanism

of the processors.
C-Prototype: void SysReset (void);
Arguments: -/-
Returns: -/-

Supported: mCAT All mCAT Versions
Hardware All

Comments:

SysScan

Function: Scans the EPROM for initial module descriptors. As it finds one, it

calls the user routine todo and continues. After memory is scanned

it returns the number of found IMDs. Could be used to generate a

list of available modules, for example.
C-Prototype: Short SysScan (void *start, long length, INTEGER(*todo)());
Arguments: start Start address for area to scan

length Length of memory area to scan
todo Pointer to a user written function that will receive a pointer

to the found IMD as a parameter.
Returns: Number of IMDs found

Supported: mCAT All Versions
Hardware All

Comments: If start == NULL, the std. Flash memory is scanned.

144/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

SysCalcHash

Function: Calculates the hash code of a string (IMD.name)
C-Prototype: UINT16 SysCalcHash (char *string);
Arguments: string Pointer to a string
Returns: hash
Supported: mCAT All versions

Hardware All
Comments:

10. The mCAT Ticker Sevice

10.1. What is the Ticker Good for?

Even if the Ticker is implemented in a separate module outside the kernel, its function is so

basic for mCAT that it is included in the kernel reference.

The ticker is an interrupt service handler for the system timer. The usable resolution is 10ms2

on Toshiba TLCS900 platforms and 1ms on ARM platforms. Within the ticker, two basically

different services are maintained:

– An interval time based message responder (classical TICKER)

– A flexible software timer mechanism (ExpressTimer)

The message responder is one of the most frequently used services in mCAT. A task can in-

struct ticker to send a given message either after a given time or at a fixed frequency back to

the task. This will make it easy to handle periodic intervals in a message driven task. There

are two API calls needed to use the message responder service: TALL (previously ALL) and

TAFTER (previously AFTER).

The message responder offers a fastest interval time of 10ms on the Toshiba TLCS900 plat-

form and 1ms on the ARM platform.

10.2. TALL

2 On TLCS900 platforms the ExpressTimer can operate at 5ms interval time in contrast to the 10ms
available with normal Ticker service. On ARM, 1 ms is available with both concepts.

© 2008 mocom software GmbH & Co KG 145/399

IV. mCAT Kernel Reference mCAT 2.20

TALL

Function: Request the ticker to send this message back at a given interval

rate. When the task receives a ticker message it can acknowledge

the message using MsgSendReply(msg,Self,ACK). In this case the

message will be scheduled for the next interval. The task can also

not acknowledge the message using

MsgSendReply(msg,Self,NAK), the ticker stops sending messages

in this case.
C-Prototype: MSGID *TALL (TickerMsg *msg, UINT32 ms, UNSIGNED priority, IN-

TEGER self);
Arguments: msg A private TickerMsg structure. This is the message

used to notify your task about a elapsed interval.
ms The interval time
priority The priority that shall be used when sending msg.
self Your own task id.

Returns: MSGID Pointer to the message id structure used for ticker

messages.
Supported: mCAT All versions

Hardware All
Comments: In earlier mCAT system, this function was called ALL. The basic

difference between TALL and ALL is that with TALL the MSGID of

the ticker/all service is returned while with ALL the MSGID was not

returned but stored in a global variable called TickerId. Both calls

and mechanisms are still available on the TLCS900 platform. On

the ARM platform, only TALL is available.

10.3. TAFTER

146/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

TAFTER

Function: Request the ticker to send this message back after a given inter-

val. When the task receives a ticker message there is no reason

to acknowlege it.
C-Prototype: MSGID *TAFTER (TickerMsg *msg, UINT32 ms, UNSIGNED priority,

INTEGER self);
Arguments: msg A private TickerMsg structure. This is the message

used to notify your task about a elapsed interval.
ms The interval time
priority The priority that shall be used when sending msg.
self Your own task id.

Returns: MSGID Pointer to the message id structure used for ticker

messages.
Supported: mCAT All versions

Hardware All
Comments: In earlier mCAT system, this function was called AFTER. The ba-

sic difference between TAFTER and AFTER is that with TAFTER

the MSGID of the ticker/all service is returned while with AFTER

the MSGID was not returned but stored in a global variable called

TickerId. Both calls and mechanisms are still available on the TLC-

S900 platform. On the ARM platform, only TAFTER is available.

10.4. The TickerMsg Structure

Usually the contents of the TickerMsg is of no interest to the user. However, it is not only

documented for completeness. The member tag may be of interest sometimes. Tag is set to

0 with a TALL / TAFTER function is called or when a TickerMsg is acknowledged by the

users task using MsgSendReply(). It is incremented whenever an interval period is complet-

ed. In that case, the message is only send to the usertask, if tag is 0 before its incremented.

That means: If you receive a TickerMsg with tag > 1, than you missed to serve the message

since tag-1 intervals! This can help to analyze and to control the responsiveness of the users

task.
typedef struct {

MSG msg; // mcat message header
INTEGER requester; // caller
INTEGER prio; // prio memory

© 2008 mocom software GmbH & Co KG 147/399

IV. mCAT Kernel Reference mCAT 2.20

UNSIGNED tag; // status marker
UNSIGNED cmd; // timer or ticker
void *internal; // internal use only!
XT xt; // placeholder for XT struct

} TickerMsg;

10.5. What is an ExpressTimer (XT)?

An ExpressTimer is a timer object used to implement fast, interrupt based timer services.

Those timers should only be used carefully. Use as few as possible, best if you can avoid to

use them. The code you can assign to those timers is executed in the timer interrupt handler

context. It slows down the interrupt handling time and therefore the code should be as fast

and straight forward as possible.

On the Toshiba TLCS900 platform the ExpressTimers time intervals can go down to 5ms.

On the ARM platform the interval can go down to 1ms.

10.5.1. The ExpressTimer Handler Function

The prototype for an XT handler function is:
INTEGER SYS_FDECL xt_handler(XT *self);

The function is called once every time the timers interval elapses. If it returns TRUE, the

timer will be removed and no longer be serviced. To receive upcoming intervals, return

FALSE.

The handler must be fast and lean. A user MUST not call ExpressIo functions from within an

XT handler. Even if not forbidden, it is not recommended to send messages from within a

handler. Never call MsgWait, ThreadSleep or ThreadDelay in an XT handler.

So what is an XT good for if all the good things are not allowed? Here is an example from

ExpressIo. The Driver for the TSM8AD8 uses an XT driven state machine to read the (very

slow) AD channels. The values read are stored in RAM for easy access. The state machine

scans all channels by switching the multiplexer and starting the conversion. The state

change is implemented by switching the handler function manually. The schedule will look

like this:

t Action
0 xt_init, set MUXER = 0

10 xt_start_conversion

20 xt_read, data for channel 0, read values and set muxer to 1

30 xt_start_conversion

148/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

t Action
40 xt_read, data for channel 1, read values and set muxer to 2

50 ...

And here is the code:
INTEGER xt_read (AD8XT *xt); // READ VALUES AND SET MUXER.
INTEGER xt_start_conversion (AD8XT *xt); // START CONVERSION AFTER

// MUXER SETTLED.

INTEGER xt_start_conversion (AD8XT *xt)
{
 // set next state
 xt->xt.code = xt_read;

 // start conversion
 outb(((UINT32)xt->ctrl.hdr.base)+2,0);

 return FALSE;
}

INTEGER xt_read (AD8XT *xt)
{
 UINT8 channel;

 // set next state
 xt->xt.code = xt_start_conversion;

 // get channel and increment
 channel = xt->ctrl.chan;
 if (channel >= 7) {
 xt->ctrl.chan = 0;
 } else {
 xt->ctrl.chan++;
 } /* endif */

 // read data for present channel
 xt->ctrl.data[channel] = inb((UINT32)xt->ctrl.hdr.base);

 // set muxer to next channel
 outb((UINT32)xt->ctrl.hdr.base,(UINT8)xt->ctrl.chan);

 return FALSE;
}

// USED TO INIT THE STATEMACHINE
INTEGER xt_init (AD8XT *xt)
{
 UNSIGNED i;

 // set basic state
 xt->xt.code = xt_start_conversion;

© 2008 mocom software GmbH & Co KG 149/399

IV. mCAT Kernel Reference mCAT 2.20

 // preset data
 for (i=0;i<8;i++) {
 xt->ctrl.data[i] = 0;
 } /* endfor */

 // set muxer to channel 0
 xt->ctrl.chan = 0;
 outb((UINT32)xt->ctrl.hdr.base,(UINT8)xt->ctrl.chan);

 // iknstall ExpressTimer, using already set handler
 XTAdd(&xt->xt,10,xt->xt.code);

 return FALSE;
}

10.5.2. The ExpressTimer Data Structure

Usually there should be no reason to access this structure directly. Use API functions in-

stead. However, there is one exception: Changing the handler manually (member code, see

example in previous chapter). Please also note that the layout and use of the members are

slightly different on the Toshiba TLCS900 platform and the ARM platform.
typedef struct __xt__ {

struct __xt__ *next; // next in ticker chain
struct __xt__ *prev; // prev in ticker chain
UINT32 schedule; // schedule in ms
UINT32 counter; // down counter
INTEGER cmd; // command code
INTEGER (*code)(); // handler

} XT;

10.5.3. The XT-API functions

150/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

XTAddTimer

Function: Adds a timer that is removed unconditionally after the interval time

has elapsed.
C-Prototype: void XTAddTimer (XT *xt, UINT32 time, INTEGER (*code)());
Arguments: xt Pointer to an XT timer structure

time The interval time
code Pointer to handler function

Returns: -/-
Supported: mCAT All versions

Hardware All
Comments:

XTAdd

Function: Adds a timer that is called periodically whenever the interval time

elapsed and until the handler function returns TRUE.
C-Prototype: void XTAdd (XT *xt, UINT32 time, INTEGER (*code)());
Arguments: xt Pointer to an XT timer structure

time The interval time
code Pointer to handler function

Returns: -/-
Supported: mCAT All versions

Hardware All
Comments:

XTRemove

Function: Remove an XT from the handling queue unconditionally.
C-Prototype: void XTRemove (XT *xt);
Arguments: xt Pointer to a XT timer structure
Returns: -/-
Supported: mCAT All versions

Hardware All
Comments:

© 2008 mocom software GmbH & Co KG 151/399

IV. mCAT Kernel Reference mCAT 2.20

XTSet

Function: Set a new interval time and handler function.
C-Prototype: void XTSet(XT *xt, UINT32 time, INTEGER (*code)());
Arguments: xt Pointer to a XT timer structure
Returns: -/-
Supported: mCAT All versions

Hardware All
Comments:

XTGetResolution

Function: Returns the resolution of the ExpressTimer System. On TLCS900

platforms this will be 5ms, on ARM platforms it will be 1ms.
C-Prototype: UNSIGNED XTGetResolution(void);
Arguments: string Pointer to a string
Returns: hash
Supported: mCAT All versions

Hardware All
Comments:

11. Error Code Cross Reference

Porting mCAT to the ARM platform was an opportunity to change the existing naming con-

ventions to follow more common standards. The table below shows old and new error codes.

Users should use the new style constants only! Please note that the old error codes are still

available for compatibility.

Old Style Error Codes New Style Error Codes Numeric Value
ErrOk SYS_ERR_OK 0
ErrNil SYS_ERR_NIL 1
ErrRun SYS_ERR_RUNNING 2

152/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IV. mCAT Kernel Reference

Old Style Error Codes New Style Error Codes Numeric Value
ErrAllInUse SYS_ERR_ALL_IN_USE 3
ErrNoRam SYS_ERR_OUT_OF_MEMORY 4
ErrNoTask SYS_ERR_NO_TASK 5
ErrNotSuspended SYS_ERR_NOT_SUSPENDED 6
ErrTrap Not used 7
ErrNoTarget SYS_ERR_NO_TARGET 8
ErrNotSelf Not used 9
ErrNoEvent SYS_ERR_NO_EVENT 10
ErrNoFreeMem Duplicat of ErrNoRam 11
ErrIsSuspended SYS_ERR_IS_SUSPENDED 12
ErrNoKernelFunction SYS_ERR_UNKNOWN_FUNCTION 13
ErrIdNotFound SYS_ERR_ID_NOT_FOUND 14
ErrIdOverflow SYS_ERR_ID_OVERFLOW 15
ErrNoValidLevel SYS_ERR_ILLEGAL_LEVEL 16
ErrWrongIntNo SYS_ERR_ILLEGAL_INT 17
ErrNotFound Duplicat of ErrIdNotFound 18
ErrIdInUse SYS_ERR_ID_IN_USE 19
ErrNotImplemented SYS_ERR_NOT_IMPLEMENTED 20
ErrMsgNotSupported SYS_ERR_NOT_SUPPORTED 21
ErrTerminated SYS_ERR_TERMINATED 22
ErrTimeOut SYS_ERR_TIME_OUT 23
ErrLocked SYS_ERR_LOCKED 24
ErrArgOutOfRange SYS_ERR_INVALID_ARGUMENT 25
ErrRttiCheckFailed SYS_ERR_RTTI_CHECK_FAILED 26
ErrNoHeap SYS_ERR_NO_HEAP 27
New Error Code SYS_ERR_NO_THREAD 28
New Error Code SYS_ERR_NO_QUEUE 29
New Error Code SYS_ERR_FATAL 30
New Error Code SYS_ERR_INTERNAL 31
New Error Code SYS_ERR_SHIB_NO_LIBRARY 32
New Error Code SYS_ERR_SHIB_NO_FUNCTION 33

© 2008 mocom software GmbH & Co KG 153/399

V. mCAT ExpressIOTM mCAT 2.20

V. mCAT ExpressIOTM

1. Introducing ExpressIOTM

1.1. Overview

ExpressIOTM is a programmers interface designed to map physical process i/o to a logical

layer that makes it easy to split the configuration off from the logic of a control application.

The configuration of a control application handles all the physical to logical mapping and the

setup of an i/o characteristic. A physical i/o may be a single bit in an io-port register of your

control system. A logical i/o should, in contrast, be usable without knowing physical details.

Its name should also reference to its suggested functionality (“conveyor_belt_moves”) rather

than to its physical location (“in_1_1_2”);.

From the logics point of view, there is no physical i/o: there are only IOOBJECTs represent-

ing the i/o.

One of the biggest advantages of splitting the configuration from the logic of an application,

is that such an application is easier to port from one hardware to another. If an application

runs fine on one hardware, usually only the configuration has to be changed to port it to an-

other one. Typical case: You designed an application on one hardware and then a new hard-

ware gets available that is cheaper and faster or has some other features you like to use. If

both systems support ExpressIOTM, porting your application from one system to the other is

simple.

Another big advantage of ExpressIOTM is its ability to add features to physical i/o ports the

original hardware does not support. For example: It is possible to insert a so-called Ex-

pressProgram, some kind of virtual i/o device, between a physical i/o and its logical repre-

sentation. That can be an EDGE detector ExpressProgram, that periodically checks a sim-

ple, naked i/o port and signals if the value of this i/o changes. Using ExpressPrograms

makes the application design smarter.

With ExpressIOTM, the logical representation of an i/o port is known as an IOOBJECT.

1.2. A Note on Datatypes

With mCAT 2.20 we had to change a few data types and names of data types for better

compatibility. However, the old mCAT 2.10 data types are still available and fully valid.

Please take the following table as a reference for the different types:

154/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

MCAT 2.10 MCAT 2.20 minimum maximum use
byte UINT8 0 255
word UINT16 0 65535
lword UINT32 0 4294967295

- UINT64 0 264-1 Not available with TLCS900
- INT8 -128 127

short INT16 -32768 32767
long INT32 -2147483648 2147483647

- INT64 -263 263-1 Not available with TLCS900
int INTEGER -32768* 32767* Default type for small inte-

gers
unsigned UNSIGNED 0 65535* Default type for unsigned in-

tegers
bool BOOL TRUE FALSE

Table 1: mCAT 2.20 data types

* The range of those types depend on the target platform. We assume that for those types

the 16-bit data range is the minimum we can rely on.

2. IOOBJECTs

The logical layer objects accessed by the logic of an application are called IOOBEJCTs.

The IOOBEJCTs (data type IOOBJECT) must be declared as global variables outside any

function bodies. Because the C runtime startup code will zero out all global variables, by

declaring them we just reserved memory to store them and gave them compile time names.

To make IOOBJECT's usable, we have to initialise them. The process of initialization is

called to create an IOOBJECT. The function IOObjCreate() does the job. It takes several ar-

guments to make a logical connection between a physical input, an optional ExpressPro-

gram, an optional runtime name and the IOOBJECT variable.

A compile time name is a name that is used by C to address an object, like a variable, a

function or a constant value. These names are dropped in the compilation process and its

important to understand that those names are not available at runtime! To provide runtime

names, the IOObjCreate() call accepts an optional argument name where you can assign a

visible string. If not needed,simply pass NULL instead of a string. Please note that if you do

not supply runtime name, your IOOBJECTS are not visible to mocom's OPC-Server or to the

SYSMON ExpressIOTM functions.

© 2008 mocom software GmbH & Co KG 155/399

V. mCAT ExpressIOTM mCAT 2.20

There is a small but efficient set of functions (or methods to keep the object orientated no-

menclature) to access and configure IOOBJECTs.

2.1. Mapping Physical Ports to IOOBJECTS

2.1.1. ExpressIOTM Physical Drivers

For every supported piece of hardware there must be a physical device driver, called an Ex-
press Driver or simply a driver. The driver abstracts the hardware to a common model of

the specific hardware. The driver is the basic link between hard- and software.

2.1.2. Bus, Module, Channel: Referring to the Hardware

The IOObjCreate() call takes – beside others – three arguments that build the physical refer-

ence that is used to map the physical i/o to an IOOBEJCT. The base idea is that every phys-

ical port can be addressed by:

1. The bus it is attached to

2. The module address that identify it within the bus

3. The channel number that identify it within the module

156/399 © 2008 mocom software GmbH & Co KG

Figure 15: Example Hardware TSMCPU900 with TSM-Bus modules attached

TSM-
CPU

IO-
CHANNELS

TSM
IO-MODULE
(BUS_TYPE_TSM)

TSM-BUS

CPU-BUS
I/O

(BUS_TYPE_CPU)

mCAT 2.20 V. mCAT ExpressIOTM

The bus selector is usually a system defined constant. Typical constants are

BUS_TYPE_CPU, BUS_TYPE_I2C, BUS_TYPE_TSM.

The module address is usually an integer value and hardware / bus specific. With TSM it is

the TSM module address set via hex switches. For IO attached directly to the CPU, some

enumerated values are provided to address the modules. See I.4. Supported Hardware Ref-

erence for more details.

The channel number is an integer value, starting with 0!

2.1.3. Classes

The CLASS identifier of an driver can be read by use of a "INFO" type call (see 2.4.). CLASS

is a 16-Bit unsigned integer. Its contents are created by a bitwise OR operation of several

possible values. The classes a driver supports can be retrieved by an AND operation of a

drivers class value and these constant definitions. The definitions available are:

CLASS_INPUT

The device or channel is an INPUT device.

CLASS_OUTPUT

The device or channel is an OUTPUT device.

CLASS_DIGITAL

The device or channel is a digital IN- or OUTPUT. There is no information provided on the

physical parameters like voltage, current or isolation. The class value simply describes the

logical behavior.

CLASS_ANALOG

The device or channel is an analog IN- or OUTPUT.

CLASS_PWM

The device or channel is a pulse width modulator OUTPUT.

CLASS_FREQ

The device or channel is a frequency counter INPUT.

© 2008 mocom software GmbH & Co KG 157/399

V. mCAT ExpressIOTM mCAT 2.20

CLASS_EVTCNT

The device or channel is an event counter INPUT.

CLASS_POS

The device or channel is a position encoder INPUT. No information is provided whether it is

an absolute or incremental position encoder.

2.1.4. The IOObjCreate Function

IOObjCreate

Function: Create an IOOBJECT by resolving the address information and bind it to

a driver, an ExpressProgram and a runtime available name .
C-Prototype: INTEGER IOObjCreate(IOOBECT *obj, char *name, UNSIGNED bus, UN-

SIGNED module, UNSIGNED chan, UNSIGNED class, char *xp);

Arguments: A pointer to a variable of type »IOOBJECT« which refers

the created object.
name An optional ASCII-name for this object
bus The bus the I/O is connected to. Use predefined constants

from xpconst.h here ONLY. They start with BUS_TYPE_...
module Refers to the module that should be used
chan Refers to the channel of this module
class required I/O class.
xp pointer to the name of the requested ExpressProgram

Returns: IOERR_CREATE_FAILED if obj is a NULL pointer

IOERR_OBJECT_EXISTS if an object with the same name

exists.

IOERR_NO_DRIVER if no physical driver to satisfy bus,mod-

ule,channel was found.

IOERR_NOTEMPLATE xp was given but it could not be

found in the database. Usually a spelling error.

IOERR_OUT_OF_MEMORY system runs out of memory

while creating the IOOBJECT.

IOERR_OK if IOOBJECT was created successfully.

Comments:

158/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

2.1.5. The SYSTEM Function

To get the benefit from ExpressIOTM, creation and configuration of IOOBEJCTs should be

placed in a single function. The recommended name for this function is SYSTEM().

The benefit in gathering all the create and configuration stuff in a single function is that it

makes it very easy to understand, change and enhance the configuration an application

needs.

2.2. Vector Access versus Single Channel Access

To access an IOOBJECT, there are to classes of methods: Vector access and single chan-

nel access.

1. The vector access methods (VECIN() and VECOUT()) allow to read all i/o of a given hard-

ware module with a single call. The IOOBJECT is used to address the given module only.

2. The single channel access methods (IN() and OUT()) really access the IOOBJECT itself.

So what type of access to use?

To get the most benefit of of ExpressIOTM, use single channel access only. The vector ac-

cess functions are far less portable and offer only a little performance advantage.

However, for some purposes these calls are the best (and only) choice. One example is the

VECCOUNT ExpressProgram.

To use the vector mode, create one IOOBJECT that refers to modules channel 0 only.

2.3. The IOOBJECT Methods in Detail

IN

Function: Read the value of an IOOBJECT

C-Prototype: INT32 IN(IOOBJECT *obj);

Arguments: obj Pointer to the referred IOOBECT

Returns: Value of the IOOBJECT.

Comments: Note: For digital i/o 0 or 1 is returned respectively.

© 2008 mocom software GmbH & Co KG 159/399

V. mCAT ExpressIOTM mCAT 2.20

OUT

Function: Write a value to a IOOBJECT

C-Prototype: void OUT(IOOBJECT *obj, INT32 value);

Arguments: obj Pointer to the referred IOOBECT
value The value to be written.

Returns: -/-

Comments: Note: For digital i/o every value that is not 0 will set the object to 1.

VECIN

Function: Read channels of the IOOBJECT's under laying module

C-Prototype: int VECIN(IOOBJECT *obj, INT32 *data, UNSIGNED len);

Arguments: obj Pointer to the referred IOOBECT
data Pointer to an array of integers to store the data read

len Size of the data array in byte. Use the standard C sizeof

operator to calculate len.
Returns: Number of bytes read. Divide this value by sizeof(INT32) to

get the number of data items read.
Comments: Note: With digital i/o this function returns a bitmap instead of an ar-

ray of INT32 values.

VECOUT

Function: Write values to the channels of the IOOBJECT's under laying module

C-Prototype: int VECOUT(IOOBJECT *obj, INT32 *data, UNSIGNED len);

Arguments: obj Pointer to the referred IOOBECT
data Pointer to an array of integers that shall be written to the

module

len Size of the data array in byte. Use the standard C sizeof

operator to calculate len.
Returns: Number of bytes read. Divide this value by sizeof(INT32) to

get the number of data items read.
Comments: Note: With digital i/o this function returns a bitmap instead of an ar-

ray of INT32 values.

160/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

2.4. Configuration and Information Retrieval

INFO

Function: Retrieve the configuration of an IOOBJECT

C-Prototype: INT32 INFO(IOOBJECT *obj, UNSIGNED cmd, UNSIGEND param);

Arguments: obj Pointer to the referred IOOBECT
cmd Specifies the particularly configuration parameter to be

read. The constant values that are allowed here can be

found in XPCONST.H and start with INFO_GET_

param This argument is reserved

Returns: The configuration value read or 0 if nothing read

Comments:

CFG

Function: Set the configuration of an IOOBJECT

C-Prototype: INT32 CFG(IOOBJECT *obj, UNSIGNED cmd, INT32 value);

Arguments: obj Pointer to the referred IOOBECT
cmd Specifies the particularly configuration parameter to be

written to. The constant values that are allowed here can

be found in XPCONST.H and start with CFG_SET_

value The value to be set.

Returns: TRUE on success

Comments:

© 2008 mocom software GmbH & Co KG 161/399

V. mCAT ExpressIOTM mCAT 2.20

INFOCH

Function: Retrieve the configuration of an IOOBJECT. This method is used if a

IOOBJECT is used to address a module for use with vector i/o methods.

In this cases it might be necessary to still configure a module on a chan-

nel by channel base.
C-Prototype: INT32 INFOIN(IOOBJECT *obj, UNSIGNED cmd, UNSIGNED ch, UNSIGEND

param);

Arguments: obj Pointer to the referred IOOBECT
cmd Specifies the particularly configuration parameter to be

read. The constant values that are allowed here can be

found in XPCONST.H and start with INFO_GET_
ch Number of the channel to access

param This argument is reserved

Returns: The configuration value read or 0 if nothing read

Comments:

CFGCH

Function: Set the configuration of an IOOBJECT. This method is used if a IOOB-

JECT is used to address a module for use with vector i/o methods. In

this cases it might be necessary to still configure a module on a channel

by channel base.
C-Prototype: INT32 CFGIN(IOOBJECT *obj, UNSIGNED cmd, UNSIGNED ch, INT32 val-

ue);

Arguments: obj Pointer to the referred IOOBECT
cmd Specifies the particularly configuration parameter to be

written to. The constant values that are allowed here can

be found in XPCONST.H and start with CFG_SET_
ch Number of the channel to access

value The value to be set.

Returns: TRUE on success

Comments:

162/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

2.5. “Express Programs”

An ExpressProgram is a virtual device that can be used like any physical device. It is used to

add functionality to a physical device the physical device does not support. This may be a

simple filter function or an edge detector. If the ExpressProgram generates i/o events – like

IO_EVT_FALL (a falling edge was detected) – we need additional functions and methods to

get informed about those events. But before we discuss the two interfaces available to han-

dle i/o events, we should have a short look at the diagram below. It shows how an Ex-

pressProgram is linked between an IOOBJECT and a physical device.

2.5.1. The WAIT Interface

The WAIT interface supplies two functions that suspend execution of a program and wait for

an i/o event to occur on a specific IOOBJECT.

© 2008 mocom software GmbH & Co KG 163/399

Figure 16: ExpressPrograms, linked between driver and IOOBJECT

IoObject

Express Program
(virtual device)

Express Driver
(physical device)

CFG
INFO
IN

OUT

WAIT
...

CFG
INFO

IN
OUT

WAIT
...

Sample: ExpressProgram »EDGE«

 Methode calls
 Object chain

V. mCAT ExpressIOTM mCAT 2.20

NOTE: WAIT was designed to support non-message based applications and its use

is only of limited use in the highly message based mCAT environment. Please take a

look on the Subscription interface which is a more suitable interface for the same

purpose.

WAIT

Function: Wait for a specific i/o event to occur. While waiting, the calling thread

does not consume CPU time. This call makes sense when used with

IOOBJECTS with attached ExpressPrograms (like EDGE or CAPTURE)

only.
C-Prototype: INTEGER WAIT(IOOBJECT *obj,UNSIGNED trigger,UINT32 timeout);

Arguments: obj Pointer to the referred IOOBECT
trigger _RISE, _EDGE, _BOTH are the values used in previous

versions of ExpressIOTM. Please use the new values

IO_EVT_FALL, IO_EVT_RISE, IO_EVT_BOTH,

IO_EVT_ONE, IO_EVT_ZERO.

Note that _RISE, _EDGE, _BOTH are binary compatible

with the new values, so a system compiles with :RISE in-

stead of IO_EVT_RISE will still operate correctly.

timeout A timeout in milliseconds. If the WAIT call is pending for

timeout ms without that trigger is matched, the call will be

terminated and the calling process will be scheduled for ex-

ecution.
Returns: 0 if fails, -1 if timeout occurred or any positive value on suc-

cess.
Comments:

164/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

WAITIO

Function: Wait for a specific i/o event to occur. While waiting, the calling thread

does not consume CPU time. This call makes sense when used with

IOOBJECTS with attached ExpressPrograms (like EDGE or CAPTURE)

only. WAITIO captures automatically the value of the IOOBJECT on trig-

ger.
C-Prototype: INTEGER WAITIO(IOOBJECT *obj,UNSIGNED trigger,UINT32 timeout,

INT32 data, UNSIGNED vlen);

Arguments: obj Pointer to the referred IOOBECT
trigger _RISE, _EDGE, _BOTH are the values used in previous

versions of ExpressIOTM. Please use the new values

IO_EVT_FALL, IO_EVT_RISE, IO_EVT_BOTH,

IO_EVT_ONE, IO_EVT_ZERO.

Note that _RISE, _EDGE, _BOTH are binary compatible

with the new values, so a system compiles with :RISE in-

stead of IO_EVT_RISE will still operate correctly.

timeout A timeout in milliseconds. If the WAIT call is pending for

timeout ms without that trigger is matched, the call will be

terminated and the calling process will be scheduled for ex-

ecution.
data Pointer to a array of INT32 values to store the captured

data.
vlen Number of entries in the array data.

Please note this is not the size in bytes as with the VECIN

& VECOUT calls!
Returns: 0 if fails, -1 if timeout occurred or the number of INT32

items read to the array data.
Comments:

2.5.2. Message Passing Interface

In an application that uses mCAT's highly event driven model, its much easier to handle ad-

ditional messages that carrie information on i/o events than calling WAIT or WIATIO.

© 2008 mocom software GmbH & Co KG 165/399

V. mCAT ExpressIOTM mCAT 2.20

We use a subscriber-consumer model to implement a message based interface. Following

this model, an application can subscribe for specific i/o-events on specific IOOBJECTS. The

message structure used is XPEvent. Only a few calls are needed to use this interface.

Refer to the example in the cc\express\belt directory of your mCAT installation to get an im-

pression what is possible with our event driven interface.

166/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

2.5.2.1. Message Passing Interface – Function Reference

XPEventSubscribe

Function: Initialize an XPEvent and send it to the ExpressIOTM XPServer. The

XPServer maintains the ExpressPrograms installed. When the requested

i/o event occurs, the XPEvent message is send back to the application to

keep it informed.
C-Prototype: MSGID *XPEventSubscribe(XPEvent *evt,UNSIGNED evtid,IOOBJECT

*obj,UNSIGNED trigger,UINT32 timeout,INT32 *value,UNSIGNED
vsize);

Arguments: evt Refers to an XPEvent message. This message is derived

from a standard mCAT-Message. The access to the infor-

mation carried by this message is available through the

API. There is no need to directly refer to members of this

message type.
evtid This is an user supplied integer that is returned with event

when its triggered. This id helps an user to sort out differ-

ent XPEvents when using more than one Subscription.

obj A reference to the IOOBJECT

trigger An event to subscribe to:

IO_EVT_FALL if a falling edge is detected

IO_EVT_RISE if a rising edge is detected

IO_EVT_BOTH if an edge is detected

IO_EVT_ONE if input is 1

IO_EVT_ZERO if input is 0

timeout An optional timeout value. Set to SYS_WAIT_INFINITE to

wait infinitely.

value A pointer to an array of INT32 to store the captured values

from the device. These values are captured along with the

detected event. If NULL, no data is captured

vsize Size of the array value in items. Example:
INT32 my_data[4];
vsize = 4;

Returns: MSGID used to identify an XPEvent. NULL if Subcription

fails.
Comments:

© 2008 mocom software GmbH & Co KG 167/399

V. mCAT ExpressIOTM mCAT 2.20

XPEventRenew

Function: If an XPEvent was triggered and received by the application, the

XPEventRenew call extracts all information needed from the XPEvent

and sends it back to the XPServer to be ready to catch the next event.
C-Prototype: UNSIGNED XPEventRenew(XPEvent *evt, UNSIGNED *captured, UNSIGNED

*evtid);

Arguments: evt Pointer to the received XPEvent
captured Pointer to a UNSIGNED integer. If provided, the number of

ITEMS written to the users data array (the value argument

in XPEventSubscribe). Maybe NULL.
id Pointer to an UNSIGNED integer. If provided, the id of the

event is stored at this location (the evtid argument in

XPEventSubscribe).
Returns: IO_EVT_ERROR if an error occurred

IO_EVT_TIMEOUT if a timeout occurred
IO_EVT_FALL if a falling edge is detected
IO_EVT_RISE if a rising edge is detected
IO_EVT_BOTH if a edge is detected
IO_EVT_ONE if input is 1
IO_EVT_ZERO if input is 0

Comments:

168/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

XPEventTerminate

Function: If an XPEvent was triggered and received by the application, the

XPEventTerminate call extracts all information needed from the

XPEvent. It does not send it back and the Subscription terminates.
C-Prototype: UNSIGNED XPEventTerminate(XPEvent *evt, UNSIGNED *captured, UN-

SIGNED *evtid);

Arguments: evt Pointer to the received XPEvent
captured Pointer to an UNSIGNED integer. If provided, the number

of ITEMS written to the users data array is stored at this lo-

cation (the value argument in XPEventSubscribe). Maybe

NULL.
id Pointer to an UNSIGNED integer. If provided, the id of the

event is stored at this location (the evtid argument in

XPEventSubscribe).
Returns: IO_EVT_ERROR if an error occurred

IO_EVT_TIMEOUT if a timeout occurred
IO_EVT_FALL if a falling edge is detected
IO_EVT_RISE if a rising edge is detected
IO_EVT_BOTH if a edge is detected
IO_EVT_ONE if input is 1
IO_EVT_ZERO if input is 0

Comments:

2.6. WatchDog Handling

A call to this function will update ALL outputs. On some systems, like ELZET80 TSM, all out-

puts are controlled by watchdog timers. It must be guaranteed that all outputs are frequently

written. If this can not be guaranteed by the application normal i/o activities, a regular call to

DrvTriggerWD() will make sure that the watchdogs are satisfied.

DrvTriggerWD

Function: Update all output modules without changing their value.

C-Prototype: void DrvTrggerWD(void);

Arguments: -/-

Returns: -/-

Comments:

© 2008 mocom software GmbH & Co KG 169/399

V. mCAT ExpressIOTM mCAT 2.20

3. Putting it together: A Quick Start Tutorial

Lets assume a simple application. We have an input that signals whether a conveyor belt is

moving or not. This input we name belt_moves. We have a digital output that switches an

alarm horn. This we name belt_fail_alarm. We have to monitor belt_moves and if it does not

move any more, we have to blow the horn by setting belt_fail_alarm.

First Step: Add The ExpressIOTM Include File (<xio\express.h>) to the list of file to be in-

cluded.

Second Step: Declare the i/o-objects needed. The i/o-objects, data type IOOBJECT, must

be declared as global variables outside any function bodies. In our little appli-

cation we have:

IOOBECT belt_fail_alarm, belt_moves;

Third step: Next step is to initialise the IOOBJECT's by calling IOObjCreate(). The

belt_moves input is presumed to be connected to physical input 7 of TSM-Bus

digital input module at TSM address 1. The belt_fail_alarm output is connect-

ed to physical output 2 of TSM-Bus digital input module at TSM address 3.

IOObjCreate(&belt_moves,
NULL,BUS_TYPE_TSM,1,7,CLASS_DIGITAL,NULL);

IOObjCreate(&belt_fail_alarm,
 NULL,BUS_TYPE_TSM,3,2,CLASS_DIGITAL,NULL);

It is recommended to check the return value of IOObjectCreate. If ev-

erything is fine, it will be IOERR_OK. In any other case, an error occurred and

the IOOBJECT was not created.

Fourth step: Now the objects are ready to use. The IN(<ioobject>) and

OUT(<ioobject>,<value>) calls can be used to read and write the i/o. Assum-

ing we have a function that is called periodically to control the belt, the code in

our little example may look like this:

if (IN(&belt_moves) == 0) {
OUT(&belt_fail_alarm,1);

}

Fifth step: If we want ExpressIOTM to control whether the belt_moves input changed, we

have to modify our little example. First, we have to create an EDGE detector

ExpressProgram between the physical i/o device and our IOOBEJCT. There-

fore we just have to change one parameter of our IOObjCreate call:

170/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

IOObjCreate(&belt_moves,
NULL,BUS_TYPE_TSM,1,7,CLASS_DIGITAL,
“EDGE”);

Sixth step: Now we can subscribe to one or more events generated by the newly created

IOOBJECT. Because we should alarm if the belt_moves input is 0, we sub-

scribe for trigger event IO_EVT_ZERO. A timeout is not needed and we are

not interested in any actual data of this input (because it is signalled implicitly).

XPEvent xpevt;
XPEventSubscribe (&xpevt, 1, &belt_moves, IO_EVT_ZERO,

SYS_WAIT_INIFINITE, NULL,0);

Seventh step: We have to handle the event in our central message loop. For now, we just

skip the details of a message loop and the message handling here. You can

find the full source code of this example in the cc\express\belt directory of

your mCAT installation.

The code is simple and straight forward. After we detect reception of

an XPEvent, we sort out whether this is ours and signal failure if it is. Finally

we have to renew our subscription.

Please note that in the full example code we use two inputs to show

how to use the event id to efficiently distinguish between different i/o events.

} else if (msg->type == xpeventid->id) {
// is this our belt_moves event? Then XPEventGetId() = 1
if (XPEventGetId((XPEvent *)msg) == 1) {

// yes, belt_moves is ZERO!
OUT(&belt_fail_alarm,1);

} else if (...) {
// some other events to handle

} else {
} /* endif */
XPEventRenew((XPEvent *)msg);

} else if (
// some other messages to handle

4. ExpressIOTM Reference

4.1. Using CFG and INFO Method Calls to Configure Devices

The standard methods CFG, CFGCH, INFO and INFOCH (see I.2.3. The IOOBJECT meth-

ods in detail) can be used to access a variety of configuration items. This chapter informs on

the items available. The general use is always the same. The items name has to be passed

© 2008 mocom software GmbH & Co KG 171/399

V. mCAT ExpressIOTM mCAT 2.20

in the configuration calls for the argument cmd. Items that can be retrieved start with

INFO_GET_ and must be used by INFO and INFOCH calls only. Items that can be changed

start with CFG_SET_ and must be used by CFG and CFGCH calls only.

4.1.1. Basic Info and Configuration Calls

4.1.1.1. Hardware Module Identification

INFO_GET_IDENT

Returns the module identification code. TSM modules will return their ID, TSMCPU devices

will return their ordinal module number.

param: Not used (0)

return: Module ID

INFO_GET_IDENT_STRING

Returns a pointer to a string. The string contains the module identification as readable text.

param: Not used (0)

return: pointer to an ASCIIZ string. Note that the return value of INFO and INFOCH is an 32-

Bit-Integer. It must be casted to prevent compile time errors by the C compiler.

example:
char *name; /* we assume an IOOBJECT »my_ioobject« is declared */
INT32 id;

name = (char *) INFO(&my_ioobject, INFO_GET_IDENT_STRING, 0);
if (name) {

id = INFO(&my_ioobject, INFO_GET_IDENT, 0);
printf(string,"Module '%s' [ID=%ld] is attached\n",name,id);

}

4.1.1.2. Retrieving Interface Information

INFO_GET_CHANNELS

172/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

Return the number of channels a module has.

INFO_GET_VECTOR_SIZE

Get the number of bytes needed to store the I/O values. This is the size you pass with the

VECIN/VECOUT calls.

INFO_GET_PORT_CLASS

Returns the class information as a 16-Bit bitmap. The values that can be returned are:

CLASS_DIGITAL, CLASS_ANALOG, CLASS_PWM, CLASS_FREQ, CLASS_EVTCNT,

CLASS_POS, CLASS_INTEGER, CLASS_FLOAT.

Any of those values can occur in any combination with CLASS_INPUT or CLASS_RMW. If

both is not set, the device is of class CLASS_OUTPUT.

4.1.1.3. Retrieving Hardware State Information

INFO_GET_POWERFAIL

Returns TRUE if a powerfail was detected.

INFO_GET_WATCHDOG

Returns TRUE if the on-board watchdog was not triggered in time and the outputs where

cleared.

4.1.1.4. Enable Operation

CFG_ENABLE

Some devices need to be enabled before use. This is true for analog output devices that

have been designed for motion control applications. Those devices have sometimes watch-

dog relays to cut the analog output and to pull the terminal down to 0 to stop an attached

servo controller. In this type of applications, its necessary to enable the device before use.

This is done by calling CFG or CFGCH with CFG_ENABLE as a cmd and TRUE as a value.

Enable is also used with devices that share hardware. Example: The TSMARMCPU and the

TSMCPU32H2 use hardware counters to provide a mix of event and frequency counters.

You can have up to 2 event counters or up to 8 frequency counters or 1 event and 4 fre-

quency counters (that is because you can easily multiplex a frequency counter but not a

© 2008 mocom software GmbH & Co KG 173/399

V. mCAT ExpressIOTM mCAT 2.20

event counter). The configuration used is just determined by a CFG_ENABLE. In this case,

the value passed is 0 to disable the frequency counters and non-null to set the counters gate

time. Please refer to for I.4.3.1.1. TSM-ARMCPU details.

4.1.2. Analog I/O

4.1.2.1. Preferred Physical Units

ExpressIOTM uses integer arithmetic for several reasons. Thus it is not always possible to re-

turn the value in a physical base unit. As an example, we return temperatures multiplied by

10.

What to measure Scale factor Physical Unit
Temperatur d (dezi) 10-1 Degrees (oC)

Voltage m (milli) 10-3 Volt

Current µ (micro) 10-6 Ampere

4.1.2.2. CFG & INFO Calls Special to Analog Modules

CFG_SET_CHANNEL_RANGE

The value passed is a range identifier. Not all ranges can be used with all analog inputs. The

TSM-8AD12 is the only board where you can set the electrical input range on a channel-by-

channel base. All others have a fixed input range (0..5V) or device specific input ranges

(TSM-8AD8<KTY and TSM-8AD8<TCK).

Range identifier Physical input range /
scaled return value

Analog input module

RANGE_RAW Binary ALL
RANGE_RAW_U_10000 0..4095, 0..10V TSM-8AD12 ONLY
RANGE_RAW_U_5000 0..4095, 0..5V TSM-8AD12 ONLY
RANGE_RAW_S_10000 -2048..+2047, -10..10V TSM-8AD12 ONLY
RANGE_RAW_S_5000 -2048..+2047, -5..5V TSM-8AD12 ONLY
RANGE_U_10000 0..10000mV TSM-8AD12
RANGE_U_5000 0..5000mV ALL
RANGE_S_10000 -10000..10000mV TSM-8AD12, TSM-2DA12
RANGE_S_5000 -5000..5000mV TSM-8AD12

174/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

Range identifier Physical input range /
scaled return value

Analog input module

RANGE_UB*** 0..1080dV

(typ. 80dV..330dV)

DINX

RANGE_020mA 0..20000µA

(250 Ohm shunt)

ALL*

RANGE_420mA 0..20000µA

(250 Ohm shunt)

ALL*

RANGE_PT100V4 -500..+2050 doC ALL*

RANGE_KTY -250..1020+ doC TSM-8AD8<KTY, DINX,

TSMCPUH2
RANGE_LM34 -150..+2500 d°C ALL 0..5000mV inputs, DINX
RANGE_THERMO_K -250..+2300 d°C TSM-8AD8<TCK

(*) Hardware modification maybe required (shunt resistor)

(**) External PER-PT100V4 module required

(***) RANGE_UB is used to for the DINX operating voltage sensor (typ. 8V..33V)

CFG_SET_GAIN

If you need to customize an analog input you can set an individual gain factor using this call.

This value has to be a 16-Bit signed integer.

For more information see I.4.1.2.3. Setting individual scaling factors

CFG_SET_ATTENTUATE

If you need to customize an analog input you can set an individual attenuate factor using this

call. This value has to be a 16-Bit signed integer.

For more information see I.4.1.2.3. Setting individual scaling factors

CFG_SET_OFFSET

© 2008 mocom software GmbH & Co KG 175/399

V. mCAT ExpressIOTM mCAT 2.20

If you need to customize an analog input you can set an individual offset using this call. This

value has to be a 32-Bit signed integer.

For more information see I.4.1.2.3. Setting individual scaling factors

CFG_SET_LINTAB

If you need to customize an analog input you can attach a LINTAB linearisation table. The

table is then used to correct and to scale all inputs.

For more information see I.4.1.2.3. Setting individual scaling factors

INFO_GET_CHANNEL_RANGE

Returns the range identifier set using CFG_SET_CHANNEL_RANGE.

4.1.2.3. Setting Individual Scaling Factors

The conversion of the analog values is done by a linear conversion algorithm:

Because we use integer arithmetic only, the actual form is a bit different:

Executing the multiplication first gives a better precision of the result.

It is possible to create a private scaling using the standard calls CFG_SET_GAIN,

CFG_SET_ATTENTUATE and CFG_SET_OFFSET. First, set the desired physical input

range like ±5V (RANGE_RAW_U_5000), if the hardware supports different ranges. And then

use the above calls to set the individual scaling rules:

Presume we are using a TSM-8AD12 module:

We want to use a pressure sensor with linear output. The physical range shall be 2.1..8.6V,

which fits into the input range of 0..10V. The pressure range is 40000-153000Pa (pascal).

176/399 © 2008 mocom software GmbH & Co KG

retval=
gain

attentuate
∗rawvalueoffset

retval=
gain∗rawvalue

attentuate
offset

mCAT 2.20 V. mCAT ExpressIOTM

A linear curve follows the formula:

p = delta * U + offset

where p is the pressure, delta is the gain and U the input voltage.

We can calculate delta from the values we have:

delta = (y2-y1) / (x2-x1)

= (153000 - 40000) / (8.6 - 2.1)

= 17384.6 Pa/V

We have delta now, so we can calculate the offset:

offset = p - delta * U

= 40000Pa - 2.1V * 17384.6 Pa/V

= 3492Pa

Finally we have to multiply delta by the conversion factor of the AD converter. For a 12-Bit

ADC (TSM-8AD12) and an RAW input range of 0..10V DC it is:

step = 10V / 4096 digits

= 0.002441 V/digit

deltadig = delta * steps

= 17384.6 Pa/V * 0.002441 V/digit

= 42.44 Pa/digit

As ExpressIOTM uses integer arithmetic, we have to split the floating point value »42.44« into

two integer values. Be aware that both values are signed and that they have to be in the

range -32767...+32768.

gain = 4244, attenuation = 100

gain / attentuation = deltadig

IOObjCreate(&pressure,NULL,BUS_TYPE_TSM,8,0,CLASS_ANALOG,NULL);
CFG(pressure, CFG_SET_CHANNEL_RANGE, RANGE_RAW_U_10000);
CFG(pressure, CFG_SET_GAIN, 4244);
CFG(pressure, CFG_SET_ATTENTUATE, 100);
CFG(pressure, CFG_SET_OFFSET, 3492);

© 2008 mocom software GmbH & Co KG 177/399

V. mCAT ExpressIOTM mCAT 2.20

See sample "SCAD.C" in express.io\demos directory.

All scaling factors set before are ignored when a LINTAB is attached and a

LINTAB is dropped if scaling factors are set.

4.1.2.4. Attaching an Individual Interpolation Table

Using the command line based program LINTAB.EXE you can create interpolation tables

that can be used by the analog input drivers to linearize the input value. Because of the pow-

er and flexibility of LINTAB tables, you can include all physical parameters like gain and off-

set within such a table. LINTAB includes support for popular sensors like PT100 (RTD

100Ohm) and the thermocouples of type R, S, B, J, T, E, K.

The table consists of raw values expected by the analog inputs. A binary search algorithm is

used to find the closest possible match and then a linear interpolation between the value and

the next higher value is calculated. This simple algorithm is pretty fast and very precise. It

has proved successful in analog measurement applications.

For detailed information on LINTAB, see the .
PRIVATE IOOBJECT temperature;

extern LINCTRL pt100v4; // LINTAB generates a seperate C file. The name of the
// exported LINCTRL structure can be set as a LINTAB
// command line option

SYSTEM () {
 /* Create the object */
 IOObjCreate(&temperature,NULL,BUS_TYPE_TSM,13,0,CLASS_ANALOG,NULL);
 CFG(&temperature,CFG_SET_LINTAB,&pt100v4,);
}

All scaling factors set before are ignored when a LINTAB is attached and a

LINTAB is dropped if scaling factors are set.

4.1.3. CFG & INFO Calls for Position Encoder Drivers

CFG_POS_SET_DIR

178/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

If set to 1 the counter direction is inverted.

CFG_SSI_SET_TURNS, CFG_SSI_SET_STEPS

Absolute Position encoders with SSI-Interface specifies it's resolution in TURNS and STEPS.

CFG_SSI_SET_TURNS sets the SSI TURNS parameter. Usual values are 512/1024.

TURNS are the numbers of revolutions the encoder can resolve. CFG_SSI_SET_STEPS is

used to set the number of turns. From the driver you get an absolute position that is com-

posed of STEPS and TURNS to form an integral position value.

Please note that both values are in bits!

Example:

TURNS 512 = 9 bits

STEPS 1024 = 10 bits

CFG(ssi,CFG_SSI_SET_TURNS,9);

CFG(ssi,CFG_SSI_SET_STEPS,10);

 INFO_GET_INDEX_STATUS

The value reported by the driver is 9+10 = 19 bits [0..524287]. If there is an over- or under-

flow of the boundary values, the encoder will jump to the opposite value:

underflow: 0-> 524287

overflow: 524287->0

4.1.4. XP BASIC Info and Configuration CALLS

4.1.4.1. Retrieving the Name of an ExpressProgram

XP_INFO_GET_NAME

Returns the pointer to the name of the XP. Useful for debugging purposes.

param: Not used (0)

return: pointer to an ASCIIZ string

© 2008 mocom software GmbH & Co KG 179/399

V. mCAT ExpressIOTM mCAT 2.20

example:

char xpname; /* we assume an IOOBJECT »my_ioobject is declared */

xpname = (char *) INFO(&my_ioobject, XP_INFO_GET_NAME, 0);

if (xpname) {

sprintf(string,"Express Program '%s' is attached\n",xpname);

}

4.1.4.2. Setting and Retrieving the Sample Rate

XP_INFO_GET_SAMPLE_RATE

Returns the currently used sample rate of an XP in ms.

param: Not used (0)

return: The sample rate in milliseconds

example:

INT32 smpl; /* we assume an IOOBJECT »my_ioobject is declared */

smpl = (INT32) INFO(&my_ioobject, XP_INFO_GET_SAMPLE_RATE, 0);

sprintf(string,"Used sample rate is '%ld',\n", smpl);

XP_INFO_GET_MAX_SAMPLE_RATE

Returns the maximal possible sample rate. This value is limited by the used system and

some possible requirements of an XP (small value = high sample rate!). With TSM900, the

maximum rate is 5ms.

param: Not used (0)

return: The maximal sample rate in milliseconds

example:

INT32 smpl; /* we assume an IOOBJECT »my_ioobject is declared */

180/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

smpl = INFO(&my_ioobject, XP_INFO_GET_MAX_SAMPLE_RATE, 0);

sprintf(string,"Maximum sample rate is '%ld',\n", smpl);

XP_CFG_SET_SAMPLE_RATE

Set the sample rate an XP should work with. The sample rate cannot be smaller than the

minimum sample rate (with TSM900, the maximum rate is 5ms).

PARAM : Sample rate in milliseconds

/* set » my_ioobject« to 50 milliseconds sample rate */

CFG(&my_ioobject, XP_CFG_SET_SAMPLE_RATE, 50);

4.2. ExpressPrograms for DIGITAL I/O

By default, there are 5 XP's available, all extending the DIGITAL input and output drivers.

However, XP's can be added to an already running system. If you have needs for a special

XP, please contact mocom software (support@mocom-software.de).

4.2.1. Single Channel XP's

These XP's support a single channel (IN(), OUT()) only.

4.2.1.1. EDGE DETECTOR

This ExpressProgram monitors a given i/o port to detect level changes. The user can pass a

trigger condition to the EDGE device by calling a WAIT, WAITIO or a XPEventSubscribe

call. When the condition is matched, all pending WAIT and WAITIO calls waiting for a specif-

ic EDGE device are resumed. All pending XPEvent messages are send back to the applica-

tion they where posted by.

© 2008 mocom software GmbH & Co KG 181/399

mailto:support@mocom-software.de

V. mCAT ExpressIOTM mCAT 2.20

Property Comment
Name EDGE

Max. Detection Frequency 100Hz
Source of i/o Events? YES

Trigger IO_EVT_FALL, IO_EVT_RISE, IO_EVT_BOTH,

IO_EVT_ONE,IO_EVT_ZERO
Special CFG calls -

Special INFO calls -

Table 2: EDGE XP Quick Overview

4.2.1.2. EVENT COUNTER

The event counter is a 32-Bit counter that can be attached to any digital input channel. The

maximum input frequency is 100Hz (symmetric, 50% duty cycle). COUNTER modifies the

functions IN and OUT. With IN() you can read the current counter value and with OUT() you

can override the counter with an value - like »0« to reset it.

Property Comment
Name COUNTER

Max. Detection Frequency 100Hz
Source of i/o Events? NO

Trigger -
Special CFG calls -

Special INFO calls -

Table 3: COUNTER XP Quick Overview

4.2.1.3. PULSE

The PULSE device is designed to generate:

• MONOFLOP like timed pulses

• Delayed ON

• Delayed pulses

• Pulse sequences with variable duty cycle

182/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

Property Comment
Name PULSE

Max. Detection Frequency 100Hz
Source of i/o Events? NO

Trigger -
Special CFG calls XP_CFG_SET_LOWTIME,XP_CFG_SET_HIGHTIME, XP_CFG_SET_TRIG-

GERMODE,XP_CFG_SET_INVERSION

Special INFO calls XP_INFO_GET_LOWTIME,XP_INFO_GET_HIGHTIME,

XP_INFO_GET_TRIGGERMODE,XP_INFO_GET_INVERSION

Table 4: PULSE XP Quick Overview

The PULSE-XP can be assigned to all digital outputs. It is configurable using the CFG()

macro. It is triggered by an OUT(<pulse-device>,<value>) call. <value> is added to a device

internal counter called queue counter. The device can be reset to its initial state using

OUT(<pulse-device>,0) at any time (queue counter is cleared, too). If trigger mode is

TRG_QUEUED the queue counter is decreased and the next pulse is started after each

pulse until the queue counter is 0. So its possible to output a well defined sequence of puls-

es.

To understand the PULSE device, you have to know the four states a pulse device can be in:

1. IDLE STATE

An unused PULSE device is in the IDLE state. This means: “do nothing”.

2. SYNC STATE

When a PULSE device is triggered it shifts to the SYNC state. In SYNC state it waits for the

next clock tick to occur. If the tick arrieves, it sets the assigned output to the level defined for

the LOW STATE ('0' if normal, '1' if inverted).

3. LOW STATE

The Device counts down the low time by one with every tick until it reaches '0'. Then it sets

the assigned output to the level defined for the HIGH STATE ('1' if normal, '0' if inverted). If

the high time is zero, the device falls back to the IDLE STATE.

4. HIGH STATE

© 2008 mocom software GmbH & Co KG 183/399

V. mCAT ExpressIOTM mCAT 2.20

The Device counts down the high time by one with every tick until it reaches '0'. Then it sets

the assigned output to the level defined for the LOW STATE ('0' if normal, '1' if inverted). If

the trigger mode is not TRG_QUEUED or the queue counter is zero, it falls back to the IDLE

STATE afterwards. If trigger mode is TRG_QUEUED and the queue counter is not '0', the

counter is decremented and a new cycle begins.

To create a MONOFLOP, configure the PULSE device as follows:

• INVERTED = TRUE

• LOWTIME: The time you like the output to be active (high)

• HIGHTIME = 0

• TRIGGER: TRG_SINGLE or TRG_RETRIGGER

To create a MONOFLOP with defined low time before the PULSE, configure the
PULSE device as follows:

• INVERTED = FALSE

• LOWTIME: The desired delay befor pulse

• HIGHTIME: The time you like the output to be active (high)

• TRIGGER: TRG_SINGLE or TRG_RETRIGGER

To create a MONOFLOP with defined low time after the PULSE, configure the PULSE
device as follows:

• INVERTED = TRUE

• LOWTIME: The active high time

• HIGHTIME: The delay after the pulse

• TRIGGER: TRG_SINGLE or TRG_RETRIGGER

To create a delayed ON Function:

• INVERTED = FALSE

• LOWTIME: The desired delay

• HIGHTIME = 0

• TRIGGER: TRG_SINGLE or TRG_RETRIGGER

184/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

To create a PULSE SEQUENCE GENERATOR:

• INVERTED = FALSE

• LOWTIME: The PULSE LOWTIME

• HIGHTIME: The PULSE HIGHTIME

• TRIGGER: TRG_QUEUED

KEYWORD Comment MACRO
XP_CFG_SET_LOWTIME Set the OFF period in milliseconds (deadtime), can

be 0.

CFG

XP_INFO_GET_LOWTIME Retrieve the current off time INFO
XP_CFG_SET_HIGHTIME Set the ON period in milliseconds (pulse) CFG
XP_INFO_GET_HIGHTIME Retrieve the current pulse width INFO
XP_CFG_SET_TRIGGERMODE Set trigger mode. The argument can be:

TRG_SINGLE

TRG_RETRIGGER

TRG_QUEUED

CFG

XP_INFO_GET_TRIGGERMODE Retrieve the current trigger mode INFO
XP_CFG_SET_INVERSION Set inversion mode. If TRUE, the logical output is

inverted (LOWTIME is “ON”, HIGHTIME is “OFF”).

CFG

XP_INFO_GET_INVERSION Retrieve the current invert state INFO

© 2008 mocom software GmbH & Co KG 185/399

V. mCAT ExpressIOTM mCAT 2.20

The Trigger-Modes differ and allow a wide variety of applications:

Mode Description Application
TRG_SINGLE A new trigger is accepted in the IDLE

STATE only – that is after the current

pulse was completed.

non-retriggerable monoflops

TRG_RETRIGGER Same as TRG_SINGLE but the trigger is

also accepted in the LOW STATE to ex-

tend the LOW STATE. The HIGH STATE

is not influenced by this trigger.

retriggerable monoflops

TRG_QUEUED All trigger pulses are counted. At the end

of a pulse the trigger counter is decre-

mented and as long as the counter is not

0, a new pulse is started.

Pulse sequence generator

Whenever the output macro is called with value other than 0, the queue counter is incre-

mented by the given value and device is triggered.

186/399 © 2008 mocom software GmbH & Co KG

Figure 17: Pulse device: functional description

Retrigger
phase
(TRG_SINGLE)

HIGH STATELOW STATESYNC
STATE

Trigger
(OUT)

XP-CLK

mCAT 2.20 V. mCAT ExpressIOTM

Example:

© 2008 mocom software GmbH & Co KG 187/399

Figure 18: Pulse device: functional description - inverted

HIGH STATELOW STATESYNC
STATE

Trigger
(OUT)

XP-CLK

V. mCAT ExpressIOTM mCAT 2.20

SYSTEM ()
{
 // create ioobject with PULSE XP
 IOObjCreate(&pulse, /* the device */
 NULL, /* no name */
 BUS_TYPE_CPU, /* it is located on the CPU BUS */
 CPU_DOUT, /* module address */
 0, /* CHANNEL */
 CLASS_DIGITAL, /* it is a DIGITAL output module */
 "PULSE"); /* USE PULSE XP */

 // configure pulse device: We want a MONOFLOP with 100ms ON-TIME
 // there is no need to set the configuration in a specific sequence
 CFG(&pulse,XP_CFG_SET_INVERTION,TRUE); // INVERSION
 CFG(&pulse,XP_CFG_SET_TRIGGERMODE,TRG_SINGLE); // NO RETRIGGER
 CFG(&pulse,XP_CFG_SET_HIGHTIME,0); // HIGHTIME = 0
 CFG(&pulse,XP_CFG_SET_LOWTIME,100); // LOWTIME = 100 ms
}
TaskMain ()
{
 SYSTEM();
 ...
 OUT(&pulse,1); // trigger MONOFLOP
 ...
}

188/399 © 2008 mocom software GmbH & Co KG

Figure 19: Pulse sequence generator

XP-CLK

Trigger
OUT(<dev>,2)

PULSE #1 PULSE #2

mCAT 2.20 V. mCAT ExpressIOTM

4.2.2. Vector XP's

Vector XP's operate on several channels at a time. The channels must be located on the

same module. If an IOOBJECT is created for use with a vector XP it automatically inherits

the number of channels available from the underlying physical device. For instance, with a

TSM-8E24 »channel« should be set to 8 to form 8 counters.

Note: In earlier versions of ExpressIOTM the channel parameter was used to set the number

of channels available. This is no longer supported. However, a change of existing software

should not be needed.

The Vector XP's are VERY powerful and efficient! They consume a minimum of processor

power. However, you will find it more flexible to use single channel XP's in many applica-

tions.

4.2.2.1. VECCOUNTER

This XP is very similar to the single channel "COUNTER" device. In contrast to

»COUNTER«, this device is capable of making a TSM32E24 a 32 channel 32-bit event

counter for frequencies up to 100Hz with only minimum overhead! The counters can be read

and written using VECIN and VECOUT calls. Using VECOUT/VECIN will guarantee that all

counters are read or written at a time - without being interrupted by the counting process.

Property Comment
Name VECCOUNTER

Max. Detection Frequency 100Hz
Source of i/o Events? NO

Trigger -
Special CFG calls -

Special INFO calls -

Table 5: VECCOUNTER XP Quick Overview

4.2.2.2. CAPTURE

While VECCOUNTER is similar to COUNTER, CAPTURE is similar to EDGE. However, the

differences are bigger:

© 2008 mocom software GmbH & Co KG 189/399

V. mCAT ExpressIOTM mCAT 2.20

CAPTURE will scan a digital input device (like the TSM8E24) for level changes. If an edge is

detected and a thread is waiting for this XP, the thread is triggered and the current IO state

is saved within the XP. You can use IN() and VECIN() macros to read these captured val-

ues. However, it is by far more efficient to use WAITIO or to pass a data buffer by

XPEventSubscribe call to read the captured data. See the »CAPTURE.C« sample.

A good trick is to use two IOObjects: One without an XP and one with CAPTURE

attached at the same time. So you can access the captured and the raw value as

you need.

Property Comment
Name CAPTURE

Max. Detection Frequency 100Hz
Source of i/o Events? YES

Trigger IO_EVT_FALL, IO_EVT_RISE, IO_EVT_BOTH,

IO_EVT_ONE,IO_EVT_ZERO
Special CFG calls -

Special INFO calls -

Table 6: CAPTURE XP Quick Overview

4.3. Supported Hardware Reference

4.3.1. ELZET80 TSM

4.3.1.1. TSM-ARMCPU

The TSMARMCPU on-board I/O can be accessed by using the BUS_TYPE_CPU Bus selec-

tor and the module and channel addresses found below:

Module Channel Range Associated PINs Comment
CPU_AIN 0..7 0..5V, 4..20mA,

KTY, PT100V4 or

LM34. 12Bit

AIN I1..8 Can be used with

PT100V4*

CPU_AOUT 0,1 0..10V / 8Bit AOUT O1,2
CPU_DIN 0..7 24VDC DIN I1..8 Can be used by

frequency counters

CPU_DOUT
0..7 24VDC / 0.5A DOUT O1..8

8 RELAY REL

190/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

Module Channel Range Associated PINs Comment
CPU_FREQ** 0..7 24VDC DIN I1..8 24-Bit HW counter

up to 500Hz
CPU_EVTCNT** 0,1 24VDC DIN I1,4 24-Bit HW counter

up to 500Hz

* External PER-PT100V4 module required

** You can't use the frequency counter and the hardware event counter at the same time.

If you connect an LM34 Temperature sensor to a 0..5000mV input, you can set

RANGE_LM34 to convert the voltage to 1/10 °C (d°C).

The default configuration is:

Module/Channel Default Range Associated PINs Switch SW600
0..20mA KTY

AIN 0 0..5000 [mV] AIN I1 1:OFF 2:OFF
AIN 1 0..5000 [mV] AIN I2 3:OFF 4:OFF
AIN 2 0..5000 [mV] AIN I3 5:OFF 6:OFF
AIN 3 0..5000 [mV] AIN I4 7:OFF 8:OFF

AIN 4 0..5000 [mV] AIN I5
AIN 5 0..5000 [mV] AIN I6
AIN 6 0..5000 [mV] AIN I7
AIN 7 0..5000 [mV] AIN I8

AOUT 0 0..10000 [mV] AOUT O1
AOUT 1 0..10000 [mV] AOUT O2

Switch SW601
1:OFF 2:OFF
3:OFF 4:OFF
5:OFF 6:OFF
7:OFF 8:OFF

The analog inputs can be configured by use of the switches SW600/601 to accept different

sensors:

SW600 0..5000mV 0..20mA KTY
RANGE_U_5000 RANGE_020mA RANGE_KTY

AIN 0 1:OFF 2:OFF 1:ON 2:OFF 1:OFF 2:ON

AIN 1 3:OFF 4:OFF 3:ON 4:OFF 3:OFF 4:ON

AIN 2 5:OFF 6:OFF 5:ON 6:OFF 5:OFF 6:ON

AIN 3 1:OFF 2:OFF 1:ON 2:OFF 1:OFF 2:ON

SW601 0..5000mV 0..20mA KTY
AIN 0 1:OFF 2:OFF 1:ON 2:OFF 1:OFF 2:ON

© 2008 mocom software GmbH & Co KG 191/399

V. mCAT ExpressIOTM mCAT 2.20

SW600 0..5000mV 0..20mA KTY
AIN 1 3:OFF 4:OFF 3:ON 4:OFF 3:OFF 4:ON

AIN 2 5:OFF 6:OFF 5:ON 6:OFF 5:OFF 6:ON

AIN 3 7:OFF 8:OFF 7:ON 8:OFF 7:OFF 8:ON

Please note that TSMARMCPU can not automatically adapt the input conversion –

the switches cannot be read back. It is the responsibility of the Programmer to set-

up the ranges as needed.

4.3.1.1.1. The Hardware Frequency and Event counters

The TSMARMCPU uses two hardware counters to implement frequency measurement and

event counters. The major difference between event counting and frequency measurement

is that event counting occupies a hardware counter while with frequency measurement you

can use a multiplexer to count serveral channels with a single hardware counter. The TS-

MARMCPU uses two 4-to-1 multiplexers to support up to 8 channels for frequency counting.

See figure Figure 18 (Page 187) for the counter architecture of TSMARMCPU.

Possible Combinations:

Number of
FREQ/EVENT

channels

Frequency measurement Event counter
channels inputs channel(s) Input(s)

4f / 1e 0..3 1..4 1 5
1e / 4f 4..7 5..8 0 1

2e none none 0..1 1,5
8f 0..7 1..8 none none

192/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

CFG_SET_ENABLE

Enable frequency counting on a given channel. The parameter you pass with

CFG_SET_ENABLE is the gate time for the counter. You can enable 4 frequency counters

at a time (see Figure 18 on page 187). For each group of four frequency counters an individ-

ual gate time can be set.

input freq range Recommended GATE time output
> 10000 Hz 100ms HZ
< 10000 Hz 1000ms HZ

< 100 Hz 10000ms HZ

Please note that frequencies higher than 3000Hz can not be measured without a

modification of the hardware.

© 2008 mocom software GmbH & Co KG 193/399

Figure 20: Counter and Multiplexer architecture of TSMCPUH2

I1..I8

MUX 0 MUX 1

H
ar

dw
ar

e
co

un
te

r 1

SEL 0:1 SEL2:3

H
ar

dw
ar

e
co

un
te

r 0

V. mCAT ExpressIOTM mCAT 2.20

4.3.1.2. TSM-CPUH2

The TSMCPUH2 on-board I/O can be accessed by using the BUS_TYPE_CPU Bus selector

and the module and channel addresses found below:

Module Channel Range Associated PINs Comment
CPU_AIN 0..7 0..5V, 4..20mA,

KTY, PT100V4 or

LM34. 10Bit

AIN I1..8 Can be used with

PT100V4*

CPU_AOUT 0,1 0..10V / 8Bit AOUT O1,2
CPU_DIN 0..7 24VDC DIN I1..8 Can be used by

frequency counters

CPU_DOUT
0..7 24VDC / 0.5A DOUT O1..8

8 RELAY REL
CPU_PWM 0,1 0..1000 DOUT O1,O2 8-Bit, 600HZ PWM

CPU_FREQ** 0..7 24VDC DIN I1..8 32-Bit HW counter

up to 500Hz
CPU_EVTCNT** 0,1 24VDC DIN I1,4 32-Bit HW counter

up to 500Hz

* External PER-PT100V4 module required

** You can't use the frequency counter and the hardware event counter at the same time.

If you connect an LM34 Temperature sensor to a 0..5000mV input, you can set

RANGE_LM34 to convert the voltage to 1/10 °C (d°C).

The default configuration is:

Module/Channel Default Range Associated PINs Switch SW600
0..20mA KTY

AIN 0 0..5000 [mV] AIN I1 1:OFF 2:OFF
AIN 1 0..5000 [mV] AIN I2 3:OFF 4:OFF
AIN 2 0..5000 [mV] AIN I3 5:OFF 6:OFF
AIN 3 0..5000 [mV] AIN I4 7:OFF 8:OFF

194/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

Module/Channel Default Range Associated PINs Switch SW600
0..20mA KTY

AIN 4 0..5000 [mV] AIN I5
AIN 5 0..5000 [mV] AIN I6
AIN 6 0..5000 [mV] AIN I7
AIN 7 0..5000 [mV] AIN I8

AOUT 0 0..10000 [mV] AOUT O1
AOUT 1 0..10000 [mV] AOUT O2

Switch SW601
1:OFF 2:OFF
3:OFF 4:OFF
5:OFF 6:OFF
7:OFF 8:OFF

The analog inputs can be configured by use of the switches SW600/601 to accept different

sensors:

SW600 0..5000mV 0..20mA KTY
RANGE_U_5000 RANGE_020mA RANGE_KTY

AIN 0 1:OFF 2:OFF 1:ON 2:OFF 1:OFF 2:ON

AIN 1 3:OFF 4:OFF 3:ON 4:OFF 3:OFF 4:ON

AIN 2 5:OFF 6:OFF 5:ON 6:OFF 5:OFF 6:ON

AIN 3 1:OFF 2:OFF 1:ON 2:OFF 1:OFF 2:ON

SW601 0..5000mV 0..20mA KTY
AIN 0 1:OFF 2:OFF 1:ON 2:OFF 1:OFF 2:ON

AIN 1 3:OFF 4:OFF 3:ON 4:OFF 3:OFF 4:ON

AIN 2 5:OFF 6:OFF 5:ON 6:OFF 5:OFF 6:ON

AIN 3 7:OFF 8:OFF 7:ON 8:OFF 7:OFF 8:ON

Please note that TSMCPUH2 can not automatically adapt the input conversion –

the switches cannot be read back. It is the responsibility of the Programmer to set-

up the ranges as needed.

4.3.1.2.1. The Hardware Frequency and Event counters

The TSMCPUH2 uses two hardware counters to implement frequency measurement and

event counters. The major difference between event counting and frequency measurement

is that event counting occupies a hardware counter while with frequency measurement you

© 2008 mocom software GmbH & Co KG 195/399

V. mCAT ExpressIOTM mCAT 2.20

can use a multiplexer to count serveral channels with a single hardware counter. The TSM-

CPUH2 uses two 4-to-1 multiplexers to support up to 8 channels for frequency counting. See

figure Figure 17 (Page 186) for the counter architecture of TSMCPUH2.

Possible Combinations:

Number of
FREQ/EVENT

channels

Frequency measurement Event counter
channels inputs channel(s) Input(s)

4f / 1e 0..3 1..4 1 5
1e / 4f 4..7 5..8 0 1

2e none none 0..1 1,5
8f 0..7 1..8 none none

196/399 © 2008 mocom software GmbH & Co KG

Figure 21: Counter and Multiplexer architecture of TSMCPUH2

I1..I8

MUX 0 MUX 1

H
ar

dw
ar

e
co

un
te

r 1

SEL 0:1 SEL2:3

H
ar

dw
ar

e
co

un
te

r 0

mCAT 2.20 V. mCAT ExpressIOTM

CFG_SET_ENABLE

Enable frequency counting on a given channel. The parameter you pass with

CFG_SET_ENABLE is the gate time for the counter. You can enable 4 frequency counters

at a time (see Figure 17 on page 186). For each group of four frequency counters an individ-

ual gate time can be set.

input freq range Recommended GATE time output
> 10000 Hz 100ms HZ
< 10000 Hz 1000ms HZ

< 100 Hz 10000ms HZ

Please note that frequencies higher than 3000Hz can not be measured without a

modification of the hardware.

4.3.1.3. TSM-CPU900

The CPU900 on-board I/O can be accessed by using the BUS_TYPE_CPU Bus selector and

the module and channel addresses found below:

Module Channel Physical
Range

Associat-
ed PINs

Comment

CPU_AIN 0..3 0..5V, 10Bit A1..4 Can be used with PT100V4** or

as 0..20mA with 250 Ohm shunt*

CPU_DOUT 0,1 Relay R1,R2
CPU_DOUT 2,3 24VDC / 2A O1,O2 Can be used by PWM devices
CPU_PWM 0,1 0..1000 O1,O2 Physically same as DOUT chan

0
CPU_DIN 0..3 24VDC I1..4

CPU_EVTCNT 0,1 24VDC I3,I4 16-Bit HW counter up to 500Hz

(*) Hardware modification required (shunt resistor)

(**) External PER-PT100V4 module required

4.3.1.4. Digital I/O boards

(8A24, 8E24, 16A24P, 16E24, 32A24, 32E24, 8A230, 8E230, 8REL)

This driver supports several TSM I/O modules, all with a common physical structure:

© 2008 mocom software GmbH & Co KG 197/399

V. mCAT ExpressIOTM mCAT 2.20

• Digital outputs and inputs

• Each bit in an IO-word is a physical I/O

• 8, 16 or 32 IO-channels per module

• All outputs can be read back

• Powerfail control logic

• Watchdog control logic (output modules only)

• All boards isolated

The following modules are supported by TSMDIO driver:

Name I/O Number of
channels

Voltage Current Technology Comment

TSM8A24 OUT 8 24VDC 0.5A Transistors
TSM8E24 IN 8 24VDC - -
TSM16A24P OUT 16 24VDC 1.5A Transistors
TSM16E24 IN 16 24VDC - -
TSM32A24 OUT 32 24VDC 0.5A Transistors Total current limit

= 5A
TSM32E24 IN 32 24VDC - -
TSM8A230 OUT 8 230VAC 8A Relay Total current limit

= 8A
TSM8E230 IN 8 230VAC - -
TSM8REL OUT 8 60V 2A Relay Changeover

4.3.1.5. Analog I/O modules

4.3.1.5.1. TSM8AD8

TSM8AD8 is a low cost analog to digital conversion module. It offers a limited resolution (8-

Bits) and conversion speed (>150µs) at a really low price. This board is designed for applica-

tions like temperature measurement. There are 4 variants of that board available:

NAME SIGNALS RANGE RETURN
(IN,VECIN)

COMMENT

TSM8AD8 Voltage 0..5V 0..5000mV

198/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

NAME SIGNALS RANGE RETURN
(IN,VECIN)

COMMENT

TSM8AD8 Voltage -50..+205°C -500..+2050 d°C** PER-PT100V4. Set

RANGE_PT100V4
TSM8AD8<I420 Current 2..21.2mA 200..21200 µA* Common analog

sensor interface
TSM8AD8<KTY KTY Sensors -25..+102°C -250..+1020 d°C KTY81, KTY10
TSM8AD8<TCK Thermo-cou-

ples

-25..+230°C -250..+2300 d°C Type K Thermocou-

ples

(*) Hardware modification required (shunt resistor)

(**) External PER-PT100V4 module required

The board is best for low cost temperature measurement using KTY81 sensors or the

PT100V4 signal conditioner device for use with PT100 sensors. For use with PT100V4 the

TSM8AD8 base module (0..5V) is used. Please keep in mind that you can connect the

PT100V4 to all TSM analog input channels including the TSMCPU900 on-board channels.

The channels are really slow - it takes more than 150µs to mux, convert and read a channel.

To improve performance, the channels are scanned in backgroud by an XP. If you access

the channels using IN() or VECIN(), you will get a copy of a memory location where the most

recently measured values are stored. A complete scan of all channels takes 10*8*2 = 160ms

- for temperature applications this should never be critical ...

4.3.1.5.2. TSM8AD12

If the TSM8AD8 is not powerful enough, you may prefer the TSM8AD12. It supports fast

conversion speed (~10µs per channel) and high resolution (12Bits). A special feature allows

this module to re-configure the inputs to several ranges:

CFG Setting Input range Raw Value Return (IN,VECIN)
RANGE_RAW_U_5000 0..5VDC 0..4095 0..4095
RANGE_RAW_U_10000 0..10VDC 0..4095 0..4095
RANGE_RAW_S_5000 -5..5VDC -2048..+2047 -2048..+2047
RANGE_RAW_S_10000 -10..10VDC -2048..+2047 -2048..+2047
RANGE_U_5000 0..5VDC 0..4095 0..5000mV
RANGE_U_10000 0..10VDC 0..4095 0..10000mV
RANGE_S_5000 -5..5VDC -2048..+2047 -5000..+5000mV

© 2008 mocom software GmbH & Co KG 199/399

V. mCAT ExpressIOTM mCAT 2.20

CFG Setting Input range Raw Value Return (IN,VECIN)
RANGE_S_10000 -10..10VDC -2048..+2047 -10000..10000mV

RANGE_020mA* 0..20mA 0..4095 0..20000µA

RANGE_420mA* 4..20mA 0..4095 0..20000µA

RANGE_PT100V4** -50..+205°C 0..4095 -500..+2050 d°C

(*) Hardware modification required (shunt resistor)

(**) External PER-PT100V4 module required

4.3.1.5.3. TSM2DA12

The TSM2DA12 has two channels with a resolution of 12 bits each. The output voltage is

-10..+10VDC. Because this board was developed for motion control applications, the outputs

are switched by relays to support secure reset operation and a fail safe watchdog action (0

VDC). The values to be set are in-between -10000..+10000mV, no other range is supported.

The outputs must be enabled using the CFG_SET_ENABLE configuration call. In releases of

the “mCAT/TSM/2da12” driver before 1.10, the enable call will set/reset the internal enable

marker only, to make the call effective you had to write a value to the DA-Converter. With

the release 1.10 this changed. To disable a DA12 channel physically, you must call

CFG_SET_ENABLE only, now. To enable it, nothing changed. First enable it, then output

your values.

4.3.1.5.4. TSM4DA16

The TSM4DA16 is a 4 channel Digital-to-Analog module. The resolution is 16-Bit. The output

voltage range is -10..+10VDC or 0..10VDC. The range can not be selected by software, the

board needs a modification for that purpose. But the range can be detected by the software

and the driver automatically is set up to work with the given range.

As with the TSM2DA12, a CFG_SET_ENABLE per channel is needed to enable the out-

puts.

4.3.1.6. Position Encoders

4.3.1.6.1. TSM4INC

TSM4INC is a 4 channel quadrature counter module. It supports the CFG_SET_DIR and

INFO_GET_INDEX_STATUS calls, see I.4.1.2.5. Position encoder modules for details.

200/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

The counters are 24bit wide. When an index pulse was detected, it is stored in hardware un-

til it is read by the INFO_GET_INDEX_STATUS call. To set the quadrature mode, use

CFG_SET_INC_MODE, INFO_GET_INC_MODE

There are 3 quadrature modes available:

LS7266_MODE_QUADRATURE_X1_COUNT

LS7266_MODE_QUADRATURE_X2_COUNT

LS7266_MODE_QUADRATURE_X4_COUNT

Default is LS7266_MODE_QUADRATURE_X4_COUNT

4.3.2. NET-A7

The NET-A7 base board itself has no ExpressIO aware I/O. However, there are a few exten-

sion boards available.

4.3.2.1. NET-A7-4I4R

The 4I4R has 4 digital inputs and 4 Relay driven digital outputs.

Module Channel Range Associated PINs Comment
CPU_DIN 0..3 24VDC ST5,ST7

CPU_DOUT 0..3 24VDC ST6 Relays

4.3.3. EVA900

The EVA900 on-board I/O can be accessed by using the BUS_TYPE_CPU Bus selector and

the module and channel addresses found below:

Module Channel Range Associated PINs Comment
CPU_AIN 0..3 0..5V, LM34,

PT100V4*

ST70..ST73

CPU_DIN 0..7 24VDC ST30..ST31
8 TTL ST7 DCF77 input

CPU_DOUT 0..3 24VDC / 0.5A** ST52
4,5 RELAY ST50,ST51
6 TRIAC ST80

CPU_PWM 0,1 24VDC / 0.5A** ST52, PIN 4,5 Shared wit DOUT

1,2

© 2008 mocom software GmbH & Co KG 201/399

V. mCAT ExpressIOTM mCAT 2.20

Module Channel Range Associated PINs Comment
CPU_EVTCNT 0,1 24VDC ST30, PIN 2,4 32-Bit HW counter

up to 500Hz

* External PER-PT100V4 module required

** Total current for all outputs should never exceed 800mA.

If you connect an LM34 Temperature sensor to a 0..5000mV input, you can set

RANGE_LM34 to convert the voltage to 1/10 °C (d°C).

If you want to use PT100 Temperature sensors, set RANGE_PT100V4 and connect an ex-

ternal ELZET80 “PERPT100V4” converter module to AIN I1..4.

The internal Timers are used to implement the counter and PWM features. Please refer to

the following list for details on timer usage:

TLCS900 TIMER Use Comment
TIMER0 RC5 IR-Receiver Used by RC5 driver
TIMER1 Not used Use not recommended because of possi-

ble side effects
TIMER2 PWM
TIMER3 mCAT/Ticker
TIMER4 PWM
TIMER5 Not used Use not recommended because of possi-

ble side effects
TIMER6 Free for user
TIMER7 Free for user
TIMER8 Free for user TI9 input of timer 8 is used for event count-

ing using an HDMA.

TI8 can be used to implement 16-Bit

Counter/Timer applications

202/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

TLCS900 TIMER Use Comment
TIMER9 Free for user TIB input of timer 9 is used for event count-

ing using an HDMA.

TIA can be used to implement 16-Bit

Counter/Timer applications

4.3.4. DINX

All DINX control units have 8 24V DC inputs and 8 24V DC 0.5A outputs. The analog inputs

vary depending on the DINX model:

Model CPU Int.
FLASH

Ext.
FLASH

RAM AIN AOUT

DINXF 95FY64 256 - 128kB 4 (0..5V) -
DINXFA 95FY64 256 - 128kB 4 (0..5V 4..20mA KTY) 2

The DINX on-board I/O can be accessed by using the BUS_TYPE_CPU Bus selector and

the module and channel addresses found below:

Module Channel Range Associated PINs Comment
CPU_AIN 0..7 0..5V, 4..20mA,

KTY, PT100V4 or

LM34. 10Bit

AIN 1..4 Channel 4 is con-

nected to a internal

LM34, Channel 5

measures the sup-

ply power.
CPU_AOUT 0,1 0..10V / 8Bit AOUT 1,2
CPU_DIN 0..7 24VDC DIN 1..8 Can be used by

event counters
CPU_DOUT 0..7 24VDC / 0.5A DOUT 1..8 Can be used by

PULSE Ex-

pressPrograms
CPU_EVTCNT 0,1 24VDC DIN 2,3 16-Bit HW counter

up to 500Hz

(*) External PER-PT100V4 module required

If you connect an LM34 Temperature sensor to a 0..5000mV input, you can set

RANGE_LM34 to convert the voltage to 1/10 °C (d°C).

© 2008 mocom software GmbH & Co KG 203/399

V. mCAT ExpressIOTM mCAT 2.20

If you want to use PT100 Temperature sensors, set RANGE_PT100V4 and connect an ex-

ternal ELZET80 “PERPT100V4” converter module to AIN I1..4.

The default configuration is:

Module/Channel Default Range Associated PINs Switch SW40
0..20mA KTY

AIN 0 0..5000 [mV] AIN I1 1:OFF 2:OFF
AIN 1 0..5000 [mV] AIN I2 3:OFF 4:OFF
AIN 2 0..5000 [mV] AIN I3 5:OFF 6:OFF
AIN 3 0..5000 [mV] AIN I4 7:OFF 8:OFF
AIN 4 -170..+330 [1/10 °C] (internal sensor)
AIN 5 1/10 V (internal sensor)
AIN 6 0..5000 [mV] expansion connector
AIN 7 0..5000 [mV] expansion connector

AOUT 0 0..10000 [mV] AOUT O1
AOUT 1 0..10000 [mV] AOUT O2

The analog inputs can be configured by use of switch SW40 to accept different sensors:

Module/Channel 0..5000mV 0..20mA KTY
RANGE RANGE_U_5000 RANGE_020mA RANGE_KTY

AIN 0 1:OFF 2:OFF 1:ON 2:OFF 1:OFF 2:ON

AIN 1 3:OFF 4:OFF 3:ON 4:OFF 3:OFF 4:ON

AIN 2 5:OFF 6:OFF 5:ON 6:OFF 5:OFF 6:ON

AIN 3 7:OFF 8:OFF 7:ON 8:OFF 7:OFF 8:ON

Please note that DINX can not automatically adapt the input conversion – the switch cannot

be read back. It is the responsibility of the Programmer to setup the ranges as needed.

4.3.5. I2C-BUS

ExpressIOTM supports up to 4 I2C-8E8A and 4 I2C-16E boards at a time. Those boards are

designed to be I/O expanders for ELZET80 DINX.

4.3.5.1. Limitations

Currently the use of ExpressPrograms (Capture, Counter etc.) is prohibited with I2C-Mod-

ules. The last Argument of IOObjCreate MUST be NULL.

204/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

4.3.5.2. I2C-8E8A24

This module offers 8 digital inputs and 8 digital outputs. The outputs are protected by a

watchdog timer. The timer will clear the outputs if the I/O is not updated at least every sec-

ond. The output voltage is 24V, the maximum current per output is 0.5A.

In ExpressIOTM a macro is used to calculate the “module” argument of an IOObjCreateCall:

I2C_8E8A24(m)

where (m) is the module address as selected by the address switch on the board. The valid

range is 0..3.

From a software point of view, this module is a bit unique because it incorporates inputs and

outputs in a single module:

Channel I/O Access
0..7 OUTPUTS READ / WRITE
8..15 INPUTS READ ONLY

4.3.5.3. I2C-16E24

This module offers 16 24V inputs. They can be addressed as channels 0..15.

In ExpressIOTM a macro is used to calculate the “module” argument of an IOObjCreateCall:

I2C_16E24(m)

where (m) is the module address as selected by the address switch on the board. The valid

range is 0..3.

Example IOObjCreate call for a I2C-Module

 /* create DIN on a PERDINX8E8A on address 4
 * the input channel is 1
 */
 IOObjCreate(&din8e8a24, /* the device */
 NULL, /* no name */
 BUS_TYPE_I2C, /* it is located on the TSM BUS */
 I2C_8E8A24(4), /* module address */
 1, /* CHANNEL */
 CLASS_DIGITAL, /* it is a DIGITAL input module */
 NULL /* MUST BE NULL */
);

© 2008 mocom software GmbH & Co KG 205/399

V. mCAT ExpressIOTM mCAT 2.20

4.3.6. BITBAHN

The BITBAHN on-board I/O can be accessed by using the BUS_TYPE_CPU Bus selector

and the module and channel addresses found below:

Module Channel Range Associated
PINs

Comment

CPU_AIN 0..3 0..10000mV / 10Bit AIN I1..4
CPU_AOUT 0..3 0..10000mV / 16Bit AOUT O1..4
CPU_DIN 0..7 24VDC DIN I1..8

CPU_DOUT 0..7 24VDC / 1.5A DOUT O1..8
CPU_EVTCNT 0,1 24VDC DIN I1,2 32-Bit HW counter

up to 500Hz

* External PER-PT100V4 module required

ExpressIOTM support for BITBAHN is limited:

• No support for the 4 SSI inputs

• No support for -10..+10V mode of the digital to analog converters (DAC)

• No support for the 0..5V mode of the analog to digital converters (ADC)

206/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

5. Library Function Reference

The Library function interface is similar to the IOOBJECT interface. The major difference is

that it allows direct access to physical drivers by use or bus, module and channel number.

So these functions are used for special purposes, like the SYSMON express commands.

A basic limitation is that these functions can be used to access the physical driver only. No

Access to IOOBEJCTS is possible (and so no access to ExpressPrograms is possible).

INTEGER IOCfg (UNSIGNED bus, UNSIGNED module, UNSIGNED chan, UNSIGNED

cmd, UINT32 param);

Using IOCfg you can configure the driver. For allowed commands see the driver reference.

bus: Select the bus to be used.

modules: Select a module within a bus.

chan: Select a channel within the module (a single out-/input terminal)

cmd: Is the command to be send to the driver

param: A command specific argument to pass

Return: TRUE specifies no error occurred

UINT32 IOInfo (UNSIGNED bus, UNSIGNED module, UNSIGNED chan, UNSIGNED cmd,

UINT32 param);

Using IOInfo you can read driver information. For allowed commands see the driver refer-

ence.

bus: Select the bus to be used.

modules: Select a module within a bus.

chan: Select a channel within the module (a single out-/input terminal)

cmd: Is the command to be send to the driver

param: A command specific argument to pass

© 2008 mocom software GmbH & Co KG 207/399

V. mCAT ExpressIOTM mCAT 2.20

Return: The value returned by the driver. The type of this value can vary depend-
ing on the selected command.

INT32 IOIn (UNSIGNED bus, UNSIGNED module, UNSIGNED chan);

Read from a single channel of a given module / bus. If the channel is a digital port, a "1" is

returned if the port is active and a "0" if not.

bus: Select the bus to be used.

modules: Select a module within a bus.

chan: Select a channel within the module (a single out-/input terminal)

void IOOut (UNSIGNED bus, UNSIGNED module, UNSIGNED chan, INT32 value);

Write to a single channel of a module / bus. If the channel is a digital output, it is activated if

the parameter "value" is TRUE (not "0").

bus: Select the bus to be used.

modules: Select a module within a bus.

chan: Select a channel within the module (a single out-/input terminal)

value: The value

INTEGER IOVecIn (UNSIGNED bus, UNSIGNED module, void *data, UNSIGNED len);

Read all channels of a module with one call. »data« points to an array where the values are

inserted. The size of an array item is depending on the channels type. If it is a digital module,

the data is stored as a bitmap. For every 8 inputs a byte is needed. For all other modules a

data item is a 32-bit signed integer.

bus: Select the bus to be used.

modules: Select a module within a bus.

data: Pointer to an array where the data will be stored

208/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

len: Size of the array data points at

return: Number of bytes copied into the array data points at

INTEGER IOVecOut (UNSIGNED bus, UNSIGNED module, void *data, UNSIGNED len);

Write all channels of a module with one call. »data« points to an array where the values are

taken from. The size of an array item is depending on the channels type. If it is a digital mod-

ule, the data is stored as a bitmap. For every 8 outputs a byte is needed. For all other mod-

ules a data item is a 32-bit signed integer.

bus: Select the bus to be used.

modules: Select a module within a bus.

data: Pointer to an array where the data will be stored

len: Size of the array data points at

return: Number of bytes copied into the array data points at

void IOWD (UNSIGNED bus, UNSIGNED module);

With the TSM system, all outputs are controlled by watchdog timers. It must be guaranteed

that all outputs are frequently written. The watchdog period is about 80ms with TSM.

A call to IOWD updates the outputs of a module connected to a specific bus.

6. LINTAB.EXE

LINTAB is a program to calculate linearisation tables for PT100 and Thermocouple sensors.

The tables can be used by ExpressIOTM Analog input devices to linearize and to scale analog

values to application specific physical units. However, the V1.0 of ExpressIOTM supports

PT100 and Thermocouple tables only (The TSM-8AD8<TCK does not need linearisation be-

cause it is already linear within the given range and resolution).

There are a lot of parameters - but most are easy to understand.

Steps

© 2008 mocom software GmbH & Co KG 209/399

V. mCAT ExpressIOTM mCAT 2.20

Table resolution. The bigger as a table is the more precise are the results. LINTAB will not

generate tables with identical table entries, so you can't create uneconomically huge tables!

For most applications a step of 5 or 10 works fine. To get optimized tables, steps should be

of a size that min. and max. temperature can be divided by steps without remainder.

From

Lower temperature boundary. The possible range is -273...+2000 °C.

To

Upper temperature boundary. The possible range is 1...2274 °C

Zero

DC offset of the sensor in °C. The PT100V4 is a good example for the use of ZERO. Zero is

the temperature where the ad-input voltage is 0V! For PT100V4 it is -50 °C. For thermocou-

ples it is usually 0V and zero is not used.

Tname

Name of the LINCTRL structure, the only name exported by the generated file.

Size

The size of the array values. Default (and the only type ExpressIOTM can handle by now) is

16-Bit signed. If size is set to »long« the table consists of 32-Bit signed integers.

Factor

The final scaling factor. It is a signed integer (16-Bit). For example the factor is »10« for all

ExpressIOTM temperature inputs (d°C).

Gain

The gain of the sensor conditioner [0.10000...100000]. For PT100 sensors gain is calculated

by the formula:

 gain = gainamp * Irtd [mA]

Range

210/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

Voltage range of the raw analog input [0.1...30 Volt]. This is the range from lowest to highest

possible voltage. As an example, a +/- 10V input has a range of 20V.

Rawres

Raw value resolution [0.0001...10000]. This value is a pre-calculated value from Res, Gain

and Range. Either set »rawres« or the parmeter group [gain,res,range] ... but not both! The

only exception is that you are allowed to combine rawres and res for automatic range check-

ing of the ADC - see »res« for more information.

Rawres = (range * 106 [µV]) / (2res * gain)

Res

The raw digital resolution in digits (Bits) [4...32] is needed to calculate rawres from gain and

range and to check if the input value range will not cause an overflow of the ADC.

<type>

For Thermocouples: R, S, B, J, T, E, K

For PT100 (RTD 100Ohm) PT100

Signed

Tells LINTAB that the ADC supplies a signed binary value. This information is used to check

for a table overflow.

Examples for using LINTAB:

Example 1:

TSM8AD12 with PT100V4 (-50...205°C) sensor conditioning unit

c: > lintab steps=10 from=-50 to=210 gain=51.456 range=5 res=12 zero=-50

 tname=pt100v4 PT100 > myfile.c

OR

c: > lintab steps=10 from=-50 to=210 rawres=23.723 zero=-50

tname=pt100v4 PT100 > myfile.c

© 2008 mocom software GmbH & Co KG 211/399

V. mCAT ExpressIOTM mCAT 2.20

zero=-50: 0V = -50°C

res=12: 12-Bit resolution (8AD12)

range=5: Voltage range is 0...5V

gain=51.456: gain: 51.456 = gainPT100V4 * IRTD = 201 * 0.256(mA)

rawres=23.772: raw resolution = (range * 106 [µV]) / (2res * gain)

23.723 = 5 * 106 [µV] / (4096 * 51.456)

tname=pt100v4: name of the LINCTRL structure exported by the generated file

myfile.c: the c file to be generated. This file can be compiled and linked

 to the users project.

Example 2: Demonstrate a table overflow!

TSM-8AD12 with external Thermocouple amplifier:

gainamp = 1000

Thermocouple type »K«:

(-200...1300°C, input voltage range with gain = 1000: -5.98..+52.39V)

Voltage input range of ADC = -5...+5V

c: > lintab steps=10 from=-200 to=1300 rawres=2.44141

tname=thermok K > tck_k.c

c: > lintab steps=10 from=-200 to=1300 gain=1000 range=10 res=12 signed

tname=thermok K > tck_k.c

res=12: 12-Bit resolution (8AD12)

range=10: Voltage range is 0...10V (-5...+5V)

signed: -2048..+2047

gain=1000: 1000

rawres=2.44141: (range * 106 [µV]) / (2res * gain)

212/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 V. mCAT ExpressIOTM

2.44141 = 10 * 106 [µV] / (4096 * 1000)

Please note that the table will overflow - only the temperatures between -150..+120 are in

range of a 12-Bit AD converter with a ±5V input range! A warning will be generated for every

value that is not in range - if res is provided. The following table will fit better:

c: > lintab steps=10 from=-150 to=120 gain=1000 range=10 res=12 signed

 tname=thermo_k K > tck_k.c

© 2008 mocom software GmbH & Co KG 213/399

VI. mCAT Socket Interface mCAT 2.20

VI. mCAT Socket Interface

1. Introduction

1.1. Features

The mCAT Socket-Interface is designed to support the mCAT operating system's message

passing structure. The communication between the protocol layers (TCP,UDP,IP) and an

users application task is established, maintained and terminated by exchanging a small set

of mCAT-messages, called Socket Events. There is also a set of functions to wrap around

the naked message passing interface and to hide both complexity and internal structure to

the user. First was made to make handling of the socket interface easier to use. Second was

made to be able to alter internal structures in future versions of the mCAT SOCKET LAYER

without changing the user interface and its handling.

Adding socket handling to an application is adding a socket interface. Because the socket in-

terface uses generic mCAT message passing, a socket interface can easily be added to ex-

isting applications.

Last, not least, the mCAT socket layer is designed to be fast.

1.2. Difference to UNIX Sockets

UNIX (LINUX et.al.) is a classical 1970's operating system. At that time event driven pro-

gramming, as used in modern operating systems like Mac OS, Windows, QNX and – of

course – mCAT, was not used very frequently. So the basic programming interfaces of UNIX

do not support event driven programming style as a natural choice. Even if its possible to do

event programming (using select() or poll()), many socket applications do not use this.

The other concept of UNIX is to presume that all data exchange is done by streams of data

rather than by well defined blocks (messages).

Finally, the UNIX programming interfaces carry a lot of historical burden.

So implementing a UNIX style API on a modern operating systems will need the host operat-

ing system to be converted into some type of UNIX. Doing this, it will produce more trouble

than benefit.

The mCAT socket layer is a modern, easy to use, message passing based socket interface.

214/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

2. Socket-Interface

2.1. The Structure of the mCAT TCP/UDP/IP Protocol Stack

The mCAT TCP/UDP/IP protocol stack is implemented in a single system task. The interface

to the network device drivers (for example the ETHERNET interface eth0) is included as well

as the application interface layer, called mCAT socket layer (“MSOCKET”). The stack sup-

ports both TCP and UDP applications.

This chapter will give a step-by-step description of the structures and functions needed to

add TCP/UDP communication to an application.

2.2. Basic Setup

2.2.1. Before the First Steps

This is not an introduction to mCAT or to the TCP/UDP/IP basics. For mCAT beginners, read

the mCAT Users Manual and the mCAT Kernel Reference first. For TCP/UDP/IP beginners,

we recommend Commer, Douglas E. And Stevens, David L.: Internetworking with TCP/IP,

Volume I.

© 2008 mocom software GmbH & Co KG 215/399

Figure 22: The IP/TCP/UDP protocol Stack

VI. mCAT Socket Interface mCAT 2.20

2.2.2. Ethernet Setup

Usually you will not need to change the setup of the Ethernet interface. However, sometimes

it can be helpful to set the interface to fixed mode:

– to increase startup time (auto-negotiation takes some time)

– to limit throughput

– to limit power dissipation (100 mBit consumes much more power than 10mBit)

The EEPROM cell EE_ETHERNET_MODE (19) is used to set the ETHERNET interface to a

fixed mode. Possible settings are:

AUTONEGOTIATION 1 (or 0xFFFF, default)

10-BASE-T FULL DUPLEX 2

10-BASE-T HALF DUPLEX 3

100-BASE-TX FULL DUPLEX 4

100-BASE-TX HALF DUPLEX 5

AUTONEGOTIATION10 8 (default on NETA7)

AUTONEGOTIATION100 9

Starting with R00409 you can use the more convenient SYSMON command ethmode to ma-

nipulate and display this value.

2.2.3. Create a MSGID

mCAT message communication needs a message id (MSGID) structure to route messages

from a client to a server. From an mCAT point of view the application is a server to the sock-

et layer – no matter if it acts as a UDP/TCP server or client. Therefore an application needs

to define a unique MSGID the socket layer will use to address the application.

A MSGID is created in the TaskInit() function of an mCAT application, just after creating the

main task. Use the standard mCAT call MsgIdCreate() to create the MSGID you need.

Choose a unique name for your MSGID.

There are only few rules for MSGID-Names. In general, you should start your mCAT names

(both Task-Names and MSGID-Names) with a uniform company or name specific id. Exam-

ples:

216/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

Company ACME, Programmer Paul More, Application 'TankDetector':

“ACME/PM/TankDetector/SocketInterface”

Call:

socket_interface =
MsgIdCreate(Self,”ACME/PM/TankDetector/SocketInterface”,NULL);

[note: the length of the id string is not limited with MSGID's]

2.2.4. Create a Socket

In the main function of an mCAT application, just before entering the central message loop,

a socket must be created. The function MSCreate(protocol,port,endpoint,listen) needs four

arguments to create a socket:

– a protocol identifier. Currently IPT_TCP and IPT_UDP are the only valid values for this ar-

gument.

– a port number. If K is -1 or 0, an anonymous port number is allocated automatically.

– an endpoint for the communication. This is nothing else but the MSGID socket_interface

we just created.

– for a server socket, listen tells the function how many connections (TCP) it is allowed to

handle at a time. Please note that this number can not be more than the number of sock-

ets totally available less one.

We can break down the variations of arguments into 4 classes:

UDP Server: protocol is IPT_UDP, port must be a known number, endpoint is our MSGID

and listen is 0.

UDP Client: protocol is IPT_UDP, port can be -1, endpoint is our MSGID and listen is 0.

TCP Server: protocol is IPT_TCP, port must be a known number (greater than 0), end-

point is our MSGID and listen must be > 0.

TCP Client: protocol is IPT_TCP, port can be -1, endpoint is our MSGID and listen is 0.

If the returned socket number (an integer) is less than 0, the function call failed. If the re-

turned value is passed to the function MSGetErrorStr(), a readable error message is re-

turned.

© 2008 mocom software GmbH & Co KG 217/399

VI. mCAT Socket Interface mCAT 2.20

2.2.5. Resolve Domain Names

If the application acts as a client, we need to know the servers IP-Address as well as the

servers port number to contact it. The port number is usually a known number, maybe even

a well known number3. The IP-Address can be given statically, too. If your server is located

in a local area network with a static address mapping, this is a good solution. However, if

your server is located on the Internet, it may be difficult to use a static IP-Address. On the In-

ternet, IP-Addresses are changed from time to time without notification. So its better to con-

tact your favourite domain name server to resolve the current IP-Address. Therefore the

function MSGetHostByName() is provided. Use the full domain name as an argument and

get the domains IP-Address as a return value.

IMPORTANT: To use this function the IP-Address of the domain name server must be

known to the IP-Stack. Refer to section 4.2. Setup IP-Addresses: setip to set IP-Addresses.

2.2.6. The Message Loop

Now we have a socket and an IP-Address. Usually this is all we need to enter the standard

mCAT message loop. Socket events are handled in this loop as any other mCAT messages

(including BITBUS, TICKER or any other). We know the incoming message is a socket

event if the mCAT message header field type is equal to the id field of the MSGID structure

we passed to the MSCreate() call. However, there are major differences between an UDP

communication and a TCP communication. That is because TCP is a connection orientated

protocol, UDP is not. With TCP you have to handle connect and disconnect procedures.

With UDP you don't. With TCP you may guard a connection by keep-a-life messages. UDP

does not worry.

Lets look a bit more detailed at how UDP and TCP handle their data exchange.

3 Well known numbers are commonly used port numbers. For example, the default well known port

number for a http server is 80. A complete list of those well known ports can be found at

http://www.iana.org/assignments/port-numbers

218/399 © 2008 mocom software GmbH & Co KG

http://www.iana.org/assignments/port-numbers

mCAT 2.20 VI. mCAT Socket Interface

2.3. Data Exchange

2.3.1. Connection Less Protocols (UDP)

2.3.1.1. No Connection!

The main feature of connectionless protocols is that there is no need to do some initial mes-

sage exchange by the protocol to synchronise a client and a server. The client can send

data at any time and frequency. The server can reply at any time and frequency. Nothing is

known about the state at the other end of the communication. If you need to know the state

at the other end, you have to implement a status exchange under your own control on top of

the protocol.

Its very easy to use a connectionless protocol to communicate with more than one server

and even between clients. Even the strict terms client and server can loose their meaning in

a connectionless environment. I can send something to Peter, Paul and Mary. They may an-

swer me. They may send me messages that have nothing to do with the messages I sent

them.

Connectionless protocols have only a little overhead. The messages sent are transported via

the IP/Ethernet without splitting them up into blocks.

However, this class of protocols – and UDP is a very basic implementation of a connection-

less protocol – lacks some important features: Flow control, end-to-end data delivery and

missing of any state information about the communication counterpart are the most danger-

ous. Even more confusing: A communication counterpart may not receive the datagrams in

the same sequence they have been sent.

2.3.1.2. Be Careful!

Do not send too many UDP-messages at a time or too fast after each other. The network

may not be able to handle that much traffic!

Do not send bursts of many messages to a single host. It may not be able to handle

them!

Do not presume a message you send will be properly received by your counterpart!

Use timeout control at application level to guard your communication!

© 2008 mocom software GmbH & Co KG 219/399

VI. mCAT Socket Interface mCAT 2.20

Add a sequence count to each application message you send (if possible). If an overload

situation occurs, any UPD/IP stack will simply drop the extra messages without notifica-

tion!

2.3.1.3. Data Exchange

The data exchange is pretty straightforward. MSWrite() is used to send data using UDP and

the only event that must be handled in the message loop is MS_EVENT_DATA_AVAIL-

ABLE. With this event, call MSRead() to copy the received data into your application's data

space. All other socket events must be dropped. Therefore a specific call is supplied called

MSDrop(event).

Because UDP datagrams can be sent to any IP-host and the incoming datagrams can be

from any other host, MSRead and MSWrite need to pass address information from / to the

socket layer:

INTEGER MSWrite(INTEGER socket, void *data, INTEGER dsize, UDPADDR *to, UNSIGNED
urgent);

• socket refers to the socket we created.

• data is a pointer to the data buffer holding the data to be sent.

• dsize is the size in bytes of our data buffer.

• to is a pointer to a UDPADDR data structure. This structure holds the IP-Address (ipaddr)

and the port number (port) the data shall be send to.

typedef struct {
 UINT32 ipaddr; // ip address of src/dest
 UNSIGNED port; // port id of src/dest
} UDPADDR;

INTEGER MSRead (MSEVENT *event, void *data, INTEGER dsize, UDPADDR *from);

• event is a pointer to the socket event received.

• data is a pointer to the data buffer that shall hold the received datagram.

• dsize is the size in bytes of our data buffer.

• from is a pointer to a UDPADDR structure where the address and the port number of the

originator of the incoming data will be stored.

220/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

2.3.1.4. Socket or Event: A Note on the Referred Objects

As you may have noticed before, MSRead and MSWrite refer to two totally different

datatypes: MSWrite to the socket and MSRead to an event. That has to be explained.

Functions that accept an MSEVENT as a first argument are designed to handle events sent

by the mCAT socket interface layer. All information needed to handle such events are includ-

ed in the events structure.

Functions that accept a SOCKET IDENTIFIER (an integer > 0) as a first argument can be

called at any time. They usually do not depend on the information carried by events. The

socket identifier is a supplied by the MSCreate() call or by a MS_EVENT_CONNECT event.

2.3.2. Connection Orientated Protocols (TCP)

2.3.2.1. Establish a Connection

Using connection orientated protocols (TCP in our case) has several advantages. Before the

data exchange can be issued, a connection must be established. TCP uses a sequence of

system messages to contact the communication counterpart and to negotiate the communic-

ation parameter. So if a connection is established once, we can be sure our communication

counterpart is reachable and available.

When data is exchanged, both communication partners will trace the number of data bytes

exchanged, will take care that data is delivered in the correct sequence and that no data is

delivered twice or lost.

It's a very good idea to compare a connection orientated protocol to a telephone call. First

you have to dial a number. When your counterpart picks up his phone the connection is es-

tablished. Once established, you can use the connection to talk until everything is said and

you or your counterpart decides to hang up. This is the disconnect.

The disadvantage of a connection orientated protocol is the need to keep track of all open

connections. That is in fact important for a TCP-Server, because the server should be able

to serve more than one connection at a time.

2.3.2.1.1. mCAT Application as a TCP Server

To simplify the handling of connections, the mCAT-API offers servers a feature called applic-

ation context identifier (acid). This is an user defined integer that is passed to the TCP proto-

col stack when a connection is accepted. Whenever data exchange or disconnect events ar-

© 2008 mocom software GmbH & Co KG 221/399

VI. mCAT Socket Interface mCAT 2.20

rive at the server application, the protocol stack passes the acid along with the event. So the

application can identify to which open connection the current event belongs to. See 4.3. A

simple mCAT-TCP-Server for an example.

The server side of the TCP-Protocol and the socket interface is the most complex part of the

entire TCP/IP package. The server application creates one socket that is bound to a port

number known by the clients or bound to a well known port number. This socket will never

be used for data exchange. It is used for connection handling ONLY! When a client connects

to a server and the connection is accepted, a new, hidden and anonymous socket is created

by the socket layer interface to handle this new connection (one socket can handle one con-

nection only). The socket identifier of this new socket is passed along with the

MS_EVENT_CONNECT event and can be taken from the events body before the connection

request is accepted.

It is important to note that this is not a feature specific to the mCAT-Socket-API. The mech-

anism is the same as with UNIX or WINDOWS sockets.

2.3.2.1.2. mCAT Application as a TCP Client

The client side is straight forward. You need to create one socket for each connection. The

port number of the client is of no interest, it can be an automatically allocated anonymous

port number. If more than one connection must be served, using different MSGID's make it

easy to relate an event to its socket.

2.3.2.2. Data Exchange

Once a connection is established, the data exchange is pretty close to the connectionless

communication – except that now a powerful protocol takes responsibility for the secure data

transport. In contrast to the connectionless data communication the MSRead and MSWrite

do not need references to address information (UDPADDR *) - passing a NULL pointer in-

stead of pointers to address structures is a good practice.

2.3.2.3. Terminating a Connection

Only a client can open a connection to a server – a server can not open a connection. But

both ends can disconnect a connection at any time and at any state of communication.

Again, the analogy to a telephone call is evident. Both partners can hang up at any time.

One option to disconnect is to close the socket. This is a rude way to give up a connection.

So the proper option is to use the MSDisconnect() call.

222/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

Please note that sockets that have been created by the socket layer to serve a connection

(server) are also closed automatically when the related connection is disconnected.

2.3.2.4. Keep-Alive

One disadvantage of the original TCP-protocol is that if a connection is established once, it

may stay connected forever without notice. That is because if there is no data exchange,

there are no control messages to make sure the connection is still open/alive and the coun-

terpart is reachable.

To fix that, a server may be configured to send simple protocol messages on idle. Those

messages are called “keep-alive” messages. The mCAT-Socket-API supports keep-alive by

means of the API function called MSKeepAlive(). It is highly recommended to keep connec-

tions not open for a longer time. But if it is necessary to keep a connection open, use the

keep-alive feature to guard your connection.

2.4. Utility Functions

The mCAT-Socket-API supports application design by a set of small helper routines, like

conversion routines for IP addresses. Please refer to 3.4. Miscellaneous for details.

© 2008 mocom software GmbH & Co KG 223/399

VI. mCAT Socket Interface mCAT 2.20

3. The Function Reference

3.1. Create and Close Sockets

INTEGER MSCreate(INTEGER protocol,INTEGER port,MSGID *endpoint,INTEGER listen);

Function: Create a socket.

Arguments: protocol IPT_TCP or IPT_UDP
port The port number to be associated with this socket. 0 or -1

will allocate an anonymous port number (suitable for

clients).
endpoint A pointer to a MSGID structure. The socket interface layer

will send all socket events related to this socket to the ms-

gid endpoint.
listen 0 for a TCP client and for UDP applications. If listen is > 0,

its the number of connections a TCP server may handle at

a time.
Returns:
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

void MSClose(INTEGER socket);

Function: Close a socket.

Arguments: socket The socket identifier of the socket to be closed. Open con-

nections are closed automatically.
Returns: -/-

Supported: mCAT 2.20 (ARM) and higher
Hardware All with ETHERNET interface

Comments:

224/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

3.2. Handling Connections

INTEGER MSConnect(INTEGER socket,UDPADDR *dest);

Function: Used by a client to establish a connection to a server. If the server is

reachable and if it accepts the connection, MS_ERROR_OK is returned.
Arguments: socket Refers to the client socket created by an MSCreate() call.

dest Pointer to a UDPADDR structure. This structure is used to

pass the internet address (member ipaddr) and the port

number (member port) of the server to be contacted.
Returns: MS_ERROR_OK if connection is established.

Any other value signals an error. See 3.6. Socket error

codes for more information on error codes.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments: This call can be used by a client only.

© 2008 mocom software GmbH & Co KG 225/399

VI. mCAT Socket Interface mCAT 2.20

INTEGER MSAccept(MSEVENT *event,MSGID *endpoint,UNSIGNED acid);

Function: Used by a server to accept a request by the client to establish a connec-

tion. The call provide some management data to the TCP-protocol stack

that is needed to handle the Data exchange.
Arguments: event Pointer to the socket API event MS_EVENT_CONNECT

Note: The socket identifier of the new anonymous socket

created to serve this connection is passed in the event

structures member socket.
endpoint An mCAT Message ID to used with the new connection.

Please note that a new, anonymous socket is created when

a connection is established. The new socket needs a MS-

GID for the same purpose as a socket created by a

MSCreate() call.

You may use the same MSGID as you used in the MSCre-

ate() call but you may also use a different one.
acid The application context identifier. The value passed via this

argument will be passed by the socket interface to with ev-

ery future socket event that belongs to this connection. For

example, this may be an array index into your connection

status table.

Acid is passed in the events structures member of the

same name.
Returns: MS_ERROR_OK if no error occured.

Any other value signals an error. See 3.6. Socket error

codes for more information on error codes.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

226/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

INTEGER MSRefuse(MSEVENT *event);

Function: If a connection request should not be accepted by a server (for what rea-

sons ever) it can call MSRefuse() to refuse the request.
Arguments: event Pointer to the socket API event MS_EVENT_CONNECT

Returns: MS_ERROR_OK if connection is established.

Any other value signals an error. See 3.6. Socket error

codes for more information on error codes.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

INTEGER MSDisconnect(INTEGER socket);

Function: A client can call MSDisconnect() at any time or state of communication to

terminate a connection. The server will be informed about the disconnec-

tion by mean of a MS_EVENT_CONNECT event.
Arguments: socket Refers to the client socket created by a MSCreate() call.

Returns: MS_ERROR_OK if connection is established.

Any other value signals an error. See 3.6. Socket error

codes for more information on error codes.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments: This call can be used by both client and server.

© 2008 mocom software GmbH & Co KG 227/399

VI. mCAT Socket Interface mCAT 2.20

INTEGER MSAckDisconnect(MSEVENT *event);

Function: When a server receives a MS_EVENT_DISCONNECT event, it can re-

lease all status information associated with the referred connection.

However, it MUST call MSAckDisconnect() to acknowledge the discon-

nect.
Arguments: event Pointer to the socket API event MS_EVENT_DISCON-

NECT
Returns: MS_ERROR_OK if connection is established.

Any other value signals an error. See 3.6. Socket error

codes for more information on error codes.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

void MSSetKeepAlive(INTEGER socket,INT32 timeout);

Function: This call is used on the server side only. It configures the TCP protocol

stack to send all timeout milliseconds a keep-alive message. A suitable

value for timeout is 60000 (1 minute) in most applications.
Arguments: socket Refers to the client socket created by a MSCreate() call.

timeout A timeout value in milliseconds. 0 disables sending keep-

alives.
Returns: -/-

Supported: mCAT 2.20 (ARM) and higher
Hardware All with ETHERNET interface

Comments: Please note that “traditional” TCP/IP books say that the keep-alive timeout
should be not less than 2 hours to prevent senseless traffic. That may be suit-
able for UNIX servers, where hundreds of sockets and connections can be used.
But this is fatal with small embedded controllers where you can have maybe 16
connections at all. If one or more connections are blocked because the system
does not notice that the communication counterpart was removed from the net-
work, the function and performance of the node may not satisfy customers
needs.

228/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

3.3. Data Exchange

INTEGER MSRead(MSEVENT *event,void *data,INTEGER dsize,UDPADDR *from);

Function: This function is used to copy the received TCP or UDP data into the re-

ceivers data space. The data are passed to an application by use of an

MS_EVENT_DATA_AVAILABLE event.

Please note that this call also frees the event, you can't read data from

one event more than once.
Arguments: event Pointer to the socket API event

MS_EVENT_DATA_AVAILABLE
data Pointer to a buffer to store
dsize Size of the user buffer. Should be not shorter than the net-

works MTU. 1500 is a good choice for the buffer size.
from Used in a UDP application to receive the counterparts IP-

address and port number. Can be NULL if not needed.
Returns: If not negative, the number of bytes transferred to the

buffer.

Any other value signals an error. See 3.6. Socket error

codes for more information on error codes.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

© 2008 mocom software GmbH & Co KG 229/399

VI. mCAT Socket Interface mCAT 2.20

INTEGER MSWrite(INTEGER socket,void *data,INTEGER dsize,UDPADDR *to,UNSIGNED urgent);

Function: Used to send data. With TCP, the data is send via an already estab-

lished connection. With UDP, the data is send and a single datagram to

the address specified by argument to.
Arguments: socket Refers to the socket -

- created by an MSCreate() call if its a client
- created by an MSCreate() call if its a UDP server
- provided along with the MS_EVENT_CONNECT if it is a
TCP server. See also MSAccept().

data Pointer to the data to be send
dsize Size data to be send in bytes. Should be not longer than

the networks MTU. However, the call returns the number of

bytes sent, so a further call can be issued to send residual

data.
to In an UDP application use to to pass the counterparts IP-

address and port number to the UDP protocol stack.

Can be NULL in TCP applications.
urgent With TCP, pass a non negative value if you want to send

an urgent value. Usually, TCP designers try to prevent us-

ing of the urgent feature, because it is not well defined.

No meaning in UDP.
Returns: If not negative, the number of bytes sent.

Any other value signals an error. See 3.6. Socket error

codes for more information on error codes.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

230/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

3.4. Miscellaneous

INTEGER MSDrop(MSEVENT *event);

Function: Every socket event that is NOT used shall be dropped by use of MS-

Drop(). MSDrop takes care of events and maybe buffers being associat-

ed with the current event are freed properly.
Arguments: event Pointer to the socket API event

MS_EVENT_DATA_AVAILABLE
Returns: MS_ERROR_OK if connection is established.

Any other value signals an error. See 3.6. Socket error

codes for more information on error codes.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

IPADDR MSGetHostByName(char *name);

Function: This function is used to resolve a host name (www.mocom-software.de).

If a domain name server address is configured, it is reachable and the

host name is known, the call will return the a proper IP address.

This function can also be used to convert a visible string holding an IP

address in the format “xxx.xxx.xxx.xxx” into a binary IP address with the

correct endian.
Arguments: name A string containing the host name or a “xxx.xxx.xxx.xxx” IP

address.
Returns: A valid IP address or 0 if failed.

Supported: mCAT 2.20 (ARM) and higher
Hardware All with ETHERNET interface

Comments: ipaddr = MSGetHostByName(“www.mocom-software.de”);

 or

ipaddr = MSGetHostByName(“172.31.31.54”);

© 2008 mocom software GmbH & Co KG 231/399

http://www.mocom-software.de/
http://www.mocom-software.de/

VI. mCAT Socket Interface mCAT 2.20

INTEGER MSIP2String(IPADDR ip,char *buffer,UNSIGNED len);

Function: Converts a given IP address into a visible string representation.

Arguments: ip The IP address to convert
buffer A buffer to store the visible string
len Length of the buffer. Minimum length is 16 bytes.

Returns: FALSE if len was too small.

If the IP address 0x351F1FAC is passed to this function,

buffer will hold the string “172.31.31.53” after the call.

Note that IP addresses are store in the big endian format

only.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

char * MSGetErrorStr(UNSIGNED error);

Function: Returns a visible representation of an error code

Arguments: error A MS_ERROR_???? error code

Returns: A string representing the code.

If MS_ERROR_REFUSE is passed to IPGetErrorStr(), the

string “CONNECTION REFUSED” will be returned.

Please note that if error code is greater than 0, "OK" will be

returned.
Supported: mCAT 2.20 (ARM) and higher

Hardware All with ETHERNET interface

Comments:

3.5. The Socket Events

The structure of a socket event is pretty complex. But there are only a few members that are

of interest for an application developer.

typedef struct {
 MSG hdr; // std hdr
 INTEGER cmd; // command code (MS_EVENT_...)
 INTEGER error; // error code (currently not used)

232/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

 INTEGER socket; // socket id
 UNSIGNED acid; // application context id
 ...
} MSEVENT;

All other members should only be handled indirectly using API calls!

3.5.1. MS_EVENT_DATA_AVAILABLE

Informs an application that data is available. Use the MSRead() call to transfer data into the

applications data space and to free buffers associated with this event.

3.5.2. MS_EVENT_CONNECT

A TCP server receives this event if a client tries to connect. Use MSAccept() to accept or

MSRefuse() to refuse the request.

3.5.3. MS_EVENT_DISCONNECT

Use to inform an application that a TCP connection is to be disconnected. Must be acknowl-

edged using MSAckDisconnect().

3.6. Socket Error Codes

 MS_ERROR_OK=0 OK, no error
 MS_ERROR_SYS=-1 Unspecified system error
 MS_ERROR_REFUSE=-2 Connection request was refused by server
 MS_ERROR_MEMORY_OVERFLOW=-3 Memory overflow
 MS_ERROR_CONNECTION_BROKEN=-4 Connection broken
 MS_ERROR_UNKNOWN_PROTO=-5 Unknown protocol request
 MS_ERROR_PORT_INUSE=-6 Port is occupied
 MS_ERROR_NO_SOCKET=-7 Invalid socket id passed
 MS_ERROR_CONNECTIONLESS=-8 Tried to "connect" a non tcp port
 MS_ERROR_USER_BUFFER=-9 User buffer too small!
 MS_ERROR_NOT_OPEN=-10 Connection no opened yet
 MS_ERROR_LISTENING=-11 MSConnect can only be called from a client
 MS_ERROR_DESTINATION_NOT_REACHABLE=-12

4. Examples

4.1. GetTime using UDP

INTEGER TaskInit (IMD *imd)
{
 INTEGER error;

© 2008 mocom software GmbH & Co KG 233/399

VI. mCAT Socket Interface mCAT 2.20

 Protect();
 Self = TaskStartup(imd,FromTop,&error,0);
 sockid = MsgIdCreate(Self,"MY/UDP/Socket",NULL);
 UnProtect();
 return Self;
}

INTEGER TaskMain (void)
{
 MSGID *id_ticker;
 MSEVENT *evt;
 INTEGER socket,
 len;
 UDPADDR daytime;
 UINT64 start,end;

 kprintf("*** udp daytime test ***\n");

 daytime.ipaddr = MSGetHostByName("ptbtime1.ptb.de");
 if (daytime.ipaddr == 0) {
 kprintf("DNS fail\n");
 daytime.ipaddr = MSGetHostByName("172.31.31.254");
 } /* endif */

 // ip addresses are ALLWAYS in big endian format
 strcpy(buffer,"---.---.---.---");
 MSIP2String(daytime.ipaddr,buffer,39);
 kprintf("SERVER=%s\n",buffer);

 // setup destination port
 daytime.port = 13;

 // Create Socket
 socket = MSCreate(IPT_UDP,0,sockid,0);
 if (socket <= 0) {
 kprintf("SOCKET ERROR=%s\n",MSGetErrorStr(socket));
 TaskDelete(Self);
 } /* endif */

 id_ticker = TALL(&tick,1000l,128,Self);
 kprintf("SELF=%d ticker=%8.8lx\n",Self,id_ticker->id);

 // send UDP Query
 MSWrite(socket,"what time is it?\n",sizeof("what time is it?\n"),&daytime,0);
 // handle
 loop {
 evt = MsgWait(0,SYS_WAIT_INFINITE);
 if (evt) {
 if (evt->hdr.type == sockid->id) {
 switch (evt->cmd) {
 case MS_EVENT_DATA_AVAILABLE:
 len = MSRead(evt,buffer,512,NULL);

234/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

 end = 0;
 Time64SinceStart(&end);
 if (len <= 0) {
 kprintf("Error reading data %s\n",MSGetErrorStr(len));
 } else {
 buffer[len] = 0;
 kprintf("DAYTIME[%d]=%s [%Ld]\n",len,buffer,end-start);
 } /* endif */
 break;

 default:
 MSDrop(evt);
 } /* endswitch */
 } else if (evt->hdr.type == id_ticker->id) {
 MsgSendReply(evt,Self,ACK);
 start = 0;
 Time64SinceStart(&start);
 MSWrite(socket,"what time is it?\n",sizeof("what time is
it?\n"),&daytime,0);
 } else {
 kprintf("UNKNOWN\n");
 } /* endif */
 } else {
 // timeout
 kprintf("TOUT\n");
 MSWrite(socket,"what time is it?\n",sizeof("what time is
it?\n"),&daytime,0);
 } /* endif */
 } /* endloop */
}

4.2. GetTime using TCP

INTEGER TaskMain (void)
{
 MSGID *id_ticker;
 MSEVENT *evt;
 INTEGER socket,
 len;
 UDPADDR daytime;
 int error;

 kprintf("*** tcp daytime test ***\n");

 daytime.ipaddr = MSGetHostByName("ptbtime1.ptb.de");
 if (daytime.ipaddr == 0) {
 kprintf("DNS fail\n");
 daytime.ipaddr = MSGetHostByName("172.31.31.254");
 } /* endif */

 // ip addresses are ALLWAYS in big endian format

© 2008 mocom software GmbH & Co KG 235/399

VI. mCAT Socket Interface mCAT 2.20

 strcpy(buffer,"---.---.---.---");
 MSIP2String(daytime.ipaddr,buffer,39);
 kprintf("SERVER=%s\n",buffer);

 // setup destination port
 daytime.port = 13;

 // Create TCP-Client Socket
 socket = MSCreate(IPT_TCP,0,sockid,0);
 if (socket <= 0) {
 kprintf("SOCKET CREATION ERROR=%s\n",MSGetErrorStr(socket));
 TaskDelete(Self);
 } /* endif */

 error = MSConnect(socket,&daytime);
 if (error != MS_ERROR_OK) {
 PError(__LINE__,error);
 TaskDelete(Self);
 } /* endif */

 id_ticker = TALL(&tick,10000l,128,Self);
 kprintf("SELF=%d ticker=%8.8lx\n",Self,id_ticker->id);

 MSWrite(socket,"what time is it?\n",sizeof("what time is it?\n"),NULL,-1);
 // handle
 loop {
 evt = MsgWait(0,SYS_WAIT_INFINITE);
 if (evt && evt->hdr.type == sockid->id) {
 switch (evt->cmd) {
 case MS_EVENT_DATA_AVAILABLE:
 len = MSRead(evt,&buffer,sizeof(buffer),NULL);
 if (len < 0) {
 PError(__LINE__,len);
 } else {
 buffer[len-2] = 0;
 kprintf("TIME='%s'\n",buffer);
 }
 break;

 case MS_EVENT_DISCONNECT:
 MSAckDisconnect(evt);
 break;

 default:
 MSDrop(evt);
 } /* endswitch */
 } else if (evt->hdr.type == id_ticker->id) {
 MsgSendReply(evt,Self,ACK);
 //kprintf("SEND QUERY ..");
 error = MSConnect(socket,&daytime);
 if (error != MS_ERROR_OK) {
 PError(__LINE__,error);
 TaskDelete(Self);

236/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

 } /* endif */
 MSWrite(socket,"what time is it?\n",sizeof("what time is
it?\n"),NULL,-1);
 } else {
 kprintf("UNKNOWN\n");
 } /* endif */
 } /* endloop */
}

4.3. A Simple mCAT-TCP-Server

/*
 * mcattcpif
 *
 * (c) 2004 mocom software GmbH & Co KG
 *
 * File: mcattcpif.c
 *
 * Created: 21.01.2004 17:29 VG
 * --
 *
 * History:
 *
 * date time author comment
 * --
 * 21.01.2004 17:29 VG mCAT TCP INTERFACE
 * --
 */
#include <mcat.h>
#include <socket.h>
#include <nvmem.h>
#include <nameserv.h>
#include <memmgr.h>
#include <simpleio.h>
#include <eeprom.h>

#define MAX_CONNECTIONS 4

PUBLIC INTEGER Self;
PRIVATE MSGID *session;
PRIVATE INTEGER session_alloc[MAX_CONNECTIONS];
PRIVATE char buffer[1500];

INTEGER TaskInit (IMD *imd)
{

INT16 error;

Protect();
// std. mCAT Task startup
Self = TaskStartup(imd,FromTop,&error,0);
// create message ID
session = MsgIdCreate(Self,"mCAT/TCPIF",NULL);

© 2008 mocom software GmbH & Co KG 237/399

VI. mCAT Socket Interface mCAT 2.20

UnProtect();

 return Self;
}

void PError(INTEGER line,INTEGER error)
{
 if (error <= MS_ERROR_OK)
 kprintf("SOCKET ERROR [%d]='%s' @%d\n",error,MSGetErrorStr(error),line);
}

INTEGER TaskMain (void)
{
 MSEVENT *evt;
 INTEGER socket;
 INTEGER i,
 error,
 len;

 kprintf("*** mCATTCPIF ***\n");

 // Create Socket, up to MAX_CONNECTIONS connections allowed
 // port number is 9000
 socket = MSCreate(IPT_TCP,9000,session,MAX_CONNECTIONS);
 if (socket <= 0) {
 kprintf("SOCKET ERROR=%s\n",MSGetErrorStr(socket));
 TaskDelete(Self);
 } /* endif */

 // enable TCP keepalive messages, timeout is 60sec
 MSSetKeepAlive(socket,60000);

 // handle
 loop {
 evt = MsgWait(0,SYS_WAIT_INFINITE);
 if (evt && evt->hdr.type == session->id) {
 switch (evt->cmd) {
 // a client wants to open a connection
 case MS_EVENT_CONNECT:
 // allocate a connection context – a structure or variable

// to store information related to this specific connection.
// In this simple example, we store just the socket identifi-

er.
// Please note that we use a array to store the context and

that
// we pass the array index as an ACID back to the socket. Ev-

ery
// future event generated by this socket will carry the acid

back
// and makes it so very easy to locate the related connection

context!
 for (i=0;i<MAX_CONNECTIONS;i++) {
 if (session_alloc[i] == 0) {
 // good, accept this

238/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VI. mCAT Socket Interface

 session_alloc[i] = evt->socket;
 error = MSAccept(evt,session,i);
 kprintf("CONNECT %d\n",i);
 break;
 } /* endif */
 } /* endfor */
 if (i > MAX_CONNECTIONS-1) {
 // refuse if too many connections
 kprintf("APP: REFUSE\n");
 MSRefuse(evt);
 } /* endif */
 break;

 // data from the client is available
 case MS_EVENT_DATA_AVAILABLE:
 // data receive
 len = MSRead(evt,buffer,sizeof(buffer),NULL);
 if (len > 0) {
 // send echo. Very simple demo

 // But you see the advantage of using the acid as
 // a table entry!

 MSWrite(session_alloc[evt->acid],buffer,len,NULL,-1);
 } /* endif */
 break;

 // client wants to disconnect
 case MS_EVENT_DISCONNECT:
 if (session_alloc[evt->acid]) {
 session_alloc[evt->acid] = 0;
 kprintf("REMOTE DISCONNECT %d\n",evt->acid);
 MSAckDisconnect(evt);
 } /* endif */
 break;

 // everything other MSEVENT can and must be ignored by MSDrop()
 default:
 MSDrop(evt);
 } /* endswitch */
 } /* endif */
 } /* endloop */
}

5. Limitations

ICMP supports the PING command only.

No support for RAW-IP.

No UDP-Broadcasts supported.

No DHCP support.

© 2008 mocom software GmbH & Co KG 239/399

VI. mCAT Socket Interface mCAT 2.20

No SSL support.

UDP-Message length is limited to the MTU length.

240/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

VII. mCAT HTTPD Server

1. Introduction

The mCAT-HTTPD-Server is a powerful embedded HTTPD server with a small memory foot-

print. In contrast to other embedded servers, the mCAT server can handle multiple connec-

tions and it can maintain up to 3 independed servers at a time, each serving an individual

TCP port. The included MSP (mCAT Server Page) language is a smart macro language to

help users to design easy to maintain pages with a high degree of direct access to system

functions and to user supplied C code functions.

All files available through the Server (HTML,GIF's, ...) are stored in a read-only file system in

the FLASH memory of the embedded node. A easy to use tool (HTFSBUILD) is provided to

generate a downloadable image of the file system using a normal Windows® sub-directory

tree as a template.

1.1. CGI-Handling

1.1.1. What is CGI-Handling?

CGI is the synonym for “COMMON GATEWAY INTERFACE”. It is a specification on how ar-

guments can be passed with a resource request using the HTTP GET or POST methodes.

Usually, CGI is used to pass arguments from an HTML-Form to an executable file on the

server to process the inputs made to this form.

1.1.2. Traditional CGI-Handling

Traditionally, when passing the results from a form to the server, a so called CGI-SCRIPT is

executed on the server to process the data and to send an answer to the client. CGI-Scripts

can be written in almost any language including PERL, phyton, VB or even C. Usually, the

output to the client is hard coded HTML-Code send to the client using a sequence of “printf”

like calls. On most systems, CGI-Scripts are located in the cgi-bin sub-directory.

There are two disadvantages with this approach:

1. Usually CGI-Scripts mix the data processing and the data representation. That makes it

hard to change the “look and feel” without changing vital processing code. If you have to

maintain a CGI-based application for different customers using different look and feels, it

may be a hard job!

© 2008 mocom software GmbH & Co KG 241/399

VII. mCAT HTTPD Server mCAT 2.20

2. In an embedded system there is usually no choice to use memory-wasting and perfor-

mance-eating script languages. We have no 2GHz CPU. We have no swap-device. So

the only alternative is to use C for CGI-Scripts and that can be a piece of hard work if the

project is complex.

1.1.3. HTML-Template processing using MSP

To separate data processing and data representation as well as to keep the price in memory

consumption and performance low, we introduce a small but powerful template processor. It

is a bit like a C-Preprocessor but with more flexibility and more power.

First, be aware that the CGI-Conventions are more general. You can pass CGI-Arguments to

any file and it is not a must to have those files in cgi-bin!

It is even possible to hand-code the argument list in an HTML HREF tag:

TEST

In this example, the arguments with the names test and cgi are passed along with their val-

ues to www.myserver.com/thisfile.htm.

So if we have a template processor, that can read, insert, process and/or modify these CGI-

arguments and call user defined (or system intrinsic) c-functions to do so, we should be able

to handle many (if not all) embedded CGI-Applications easily.

Looking from outside, a “normal” HTML page and a CGI-Script differ in nothing but the pres-

ence of an argument list. MSP is the technology to handle the arguments in HTML files.

It is a tool for creating embedded dynamic HTML pages.

2. The mCAT-HTTPD-Server setup

2.1. TCP/IP configuration

First you have to make sure that the TCP/IP configuration works fine. Please refer to 1.5.

SYSMON-Support in the Socket documentation for details.

2.2. The HT-FileSystem (HTFS)

The HTFS file system is an easy to use read-only file system. The tool htfsbuild creates an

image file from a normal windows directory tree. This image can be relocated to any address

in the target system. The recommended address for HTFS images is 0xA00000-0xAFFFFF

(1MByte).

242/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

There is one thing to take care of: With HTFS, all file and directory names are changed to

lower case. Please be aware of this and use only lower case references in your HTML code!

Using a Windows directory tree as template is pretty comfortable.

– create a directory and create (using one of the examples as a template) a config.db file.

– create a root sub-directory and insert the name of this root into config.db

– copy everything you need (gif, jpg, html, txt) into this directory

– copy a makefile from one of the examples to the base directory and edit the makefile as

needed (name of the image tree)

– call vmake to build the image.

– download the generated SHX-File

Please study the example <mcatpath/cc/httdp/1-simple. Here you can see the basic opera-

tion at a glance!

2.3. Basic Authentication

Starting with Release 402 and htfsbuild 2.12 the mCAT HTTPD-Server supports Basic Au-

thentication. This is not a very hard security mechanism, but it is good enough to protect

websites from unauthorized changes by chance - An open door may tempt a saint.

To protect a website, two steps are required:

1. Add user-names and passwords to config.db. See 2.4.1.8. User-Names and Pass-

words for details.

2. Add a ..protect file to each sub-directory. The ..protect file is a plain text file holding

the list of users allowed to read files from this directory. A single '*' char allows all

users to access this directory. Please note that if user-names are included into con-

fig.db each accessible directory MUST have a ..protect file. If not, its unaccessible via

HTTP.

© 2008 mocom software GmbH & Co KG 243/399

VII. mCAT HTTPD Server mCAT 2.20

2.4. The 'config.db' file

The config.db is designed to configure your mCAT-HTTPD-Server. It is a plain text file and

easy to maintain. Most of the text are MIME file assignments that must be included. HTFS-

BUILD will tag all files with the suitable MIME-ID when building the HTFS image. That makes

MIME handling in the embedded system very easy. It is recommended to use a config.db

from one of the examples as a template to include all MIME definitions.

The basic information you have to edit is the server definition:

SERVER=MyWebSite
MyWebSite.port=80
MyWebSite.connections=4
MyWebSite.root=/root
MyWebSite.users=*
MyWebSite.keepalive=60
MyWebSite.txbuffersize=32
MyWebSite.rxbuffersize=32
MyWebSite.mempool=32

This definition creates a Webserver named MyWebSite listening to port 80. We allow to

maintain up to 4 connections at a time. The HTML-Root directory within the image is “/root”.

We agree to allow a TCP keep-a-live time of 60 seconds. The receive and transmit buffers

as well as the memory pool for MSP execution are being set up, too.

Note: By now, users is reserved.

The following configuration is a bit more advanced. It setup two servers: “Service” and

“View”.
SERVER=VIEW,SERVICE

SERVICE.port=8000
SERVICE.connections=1
SERVICE.root=/service
SERVICE.users=*
SERVICE.keepalive=20

VIEW.port=80
VIEW.connections=4
VIEW.root=/service/view
VIEW.users=*
VIEW.keepalive=60

244/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

2.4.1. Config Parameters

2.4.1.1. Port

You can have up to three instances of the HTTPD server running at a time. Every server

needs an unique port number. The parameter port is used to set the desired port number.

Please note that the default port for HTTP is 80. A server listening at a non-standard port

can be accessed by adding the port number to the URL. For example, a server listening at

8000 can be accessed using a web browser by typing
http://172.31.31.51:8000/index.htm

2.4.1.2. Connections

On an embedded system with limited resources it makes no sense to allow an unlimited

number of TCP connections to be opened at a time. In some cases it even makes sense to

limit the number of connections down to 1. Using the parameter connections you can con-

figure the mCAT HTTPD as needed.

2.4.1.3. Root

The parameter root sets the root directory for the server inside the HTFS file system. Root

can not be omitted.

There are several ways to use root if more than one HTTPD server shall be used:

1. Give all servers the same root. This will give all servers the access to the same files and

the same directory structure.

2. Give them different roots on the same directory level. This will make it impossible for the

servers to access the files of another server.

3. Give them different roots within the common directory hierarchy. That will allow them to

share resources but will also hide private properties. Please study example “5-msp” from

the mCAT installation. It shows two websites using this approach.

2.4.1.4. Keepalive

An idle TCP connection does not exchange any messages. If the connection is broken (be-

cause someone pulls a plug or a system is crashed), the server will not be notified and the

connection will stay open until the system is restarted. To prevent this, TCP defined a keep-

a-live mechanism. When no message is received within a given timeout the server will send

a TCP ACK frame for a packet it already received. The counterpart of the connection will an-

© 2008 mocom software GmbH & Co KG 245/399

VII. mCAT HTTPD Server mCAT 2.20

swer this ACK by another ACK. In case the client responds correctly, the connection is treat-

ed as intact and it is kept open. If not, another ACK is send and if this is still not answered,

the connection will be closed.

Setting keepalive to a reasonable value will keep the server accessible. The value is the

timeout in seconds. Zero (0) disables the keep-a-live mechanism.

2.4.1.5. Txbuffersize

The transmit buffer is used as a buffer to store data to be send. In case of MSP pages, the

entire page must fit into the transmit buffer before it can be send. The default is 8kByte and

this is usually enough (this is not true for other files, like graphic image files). But sometimes

its not and you can configure your server to use a bigger transmit buffer.

2.4.1.6. Rxbuffersize

The receive buffer is also 8kBytes by default. Usually there is no need to enlarge it. It may

be necessary to enlarge the receive buffer if large HTML-Forms have to be processed.

2.4.1.7. Mempool

While an MSP-Page is processed, dynamic memory is needed to store temporary results

and data. This is done in a fixed size memory pool. After executing an MSP page, the mem-

ory pool is cleared and it is empty for the next MSP-Page processing. Usually, 8kByte are

enough for a reasonable complex MSP-Page. However, to be flexible the size of this memo-

ry pool can be changed by use of parameter mempool.

2.4.1.8. User-Names and Passwords

To make users and their passwords known to the system, they are included into config.db.

User-names and passwords can contain almost all ASCII characters including space (' ').

Not allowed are ':', witch is used to separate user names and passwords, ',' witch is used to

separate user-name:password groups and the newline character ('\n').

USERS=Aladdin:open sesame,willi:sowieso,paul:genau

A maximum of 16 users can be assigned. The line in config.db may not exceed 1024 Char-

acters.

246/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

3. The mCAT Server Page (MSP) Language

3.1. CGI Argument passing

The CGI-Arguments passed with the URL are parsed by MSP and stored in a standard argu-

ment list data structure (see 3.2.6. Argument Lists and 3.5.1. Internal Representation of Ar-

gument Lists). There are only a few rules to follow to form a valid CGI-Argument list:

– A question mark ('?') is used to separate the documents URL and the argument list

– The argument list consist of one or more pairs of an argument name and an argument

value.

– If there are more than on name/value pair, the pairs are separated by an ampersand ('&').

– If an ampersand, a question mark or any other special character not allowed in an URL

(like space ' ') occurs in a value, it must be replaced by its hexadecimal representation.

The hexadecimal representation is formed by a leading percent sign ('%') and two hex-

© 2008 mocom software GmbH & Co KG 247/399

Figure 23: URL and argument passing

maintain.htm

argument vector

http://www.myserver.com/maintain.htm?name=Joe&surname=Sixpack

VII. mCAT HTTPD Server mCAT 2.20

adecimal digits. The MSP-Parser replaces hexadecimal values with their original charac-

ter value. If the percent sign ('%') must be included in a value, it must be replaced by its

hexadecimal representation.

An MSP-User has not to deal with all those rules as long as he does not need to form a CGI-

Argument list by hand. However, for testing a page it can be helpful to add arguments manu-

ally.

Note: The CGI-Specification does not require that arguments passed as name/value pairs.

But MSP does! However, the most common use of CGI-Arguments is to pass HTML-Form

data and there you usually use name/value pairs to have an unique way to identify data.

3.2. An MSP Statement

An MSP-Statement starts with the MSP-ESCAPE character ('@'). This is immediately fol-

lowed by another ESCAPE character ('@' or '%'). If not, it is assumed that this is not an MSP

statement and the text is send without modification. There are three possible forms of an

MSP statement:

1. KEYWORD Statement

@@keyword{(<argument list>)}

2. Function or Filter call Statement

@@namespace.key(<argument list>)

3. Constant Reference

@%constant_name

3.2.1. Charsets

HTML files containing MSP statements must be of ASCII or UTF8 format. Other formats will

not be processed properly.

248/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

3.2.2. Escape Characters

3.2.2.1. General statement escape character

Every valid MSP statement is preceded by a '@' character. The statement escape character

should be followed by a macro (see 3.2.2.2), constant (see 3.2.2.4) or a keyword (see

3.2.2.3) escape character immediatly. If not, the '@' is pasted into the HTML file and we do

not have a valid MSP statement.

Example:

<H1>@@paste('Hello World!')</H1>

contains a valid MSP statement (a keyword with an argument list).

mailme

is not an MSP statement. It will be passed to the client unmodified.

3.2.2.2. Macro escape character

Macros are preceded by a '@' character.

The syntax definition of a macro is:

'@' <symbol_name> '(' <argument-list> ')'

No white space characters are allowed between the macro escape character and the sym-

bol!

3.2.2.3. Keyword escape character

Keywords are also preceded by a '@' character.

Each keyword uses its own syntax definition, see 3.2.7.

No white space characters are allowed between the keyword escape character and the sym-

bol!

3.2.2.4. Constant value macros escape character

Constant values like version numbers or system parameters can be registered by the appli-

cation or system software. They can be inserted into an MSP file using the constant value

macro.

Constant values are preceded by a '%' character.

© 2008 mocom software GmbH & Co KG 249/399

VII. mCAT HTTPD Server mCAT 2.20

The syntax definition of a macro is:

'%' <symbol_name>

No white space characters are allowed between the constant escape character and the sym-

bol!

Example:

@%system.version in

<h2>mCAT HTTPD Version @%system.version<H2>

will be replaced by the the current version of the mCAT HTTPD.

3.2.3. Symbols

A valid symbol has up to 32 characters. The first character of a symbol can be an upper or

lowercase latin letter. All other characters of a symbol can be either upper or lowercase latin

letter, a digit (0..9) or a dot ('.').

The dot seperates a symbol into sub-symbols used to select namespaces.

3.2.4. Namespaces

All macros and constants are stored by mCAT-HTTPD using a tree structure called names-

pace. Using the namespace, macros and constants can be grouped (and sub-grouped).

Example:

the namespace 'xio' holds all macros and constants needed to access mCAT's ExpressIo:

@@xio.in(%xio.TSM,2,0)

The ExpressIO Function IOIn() is called. The first argument is the integer constant to refer to

the TSM-Bus, the second argument selects the module and the third the channel. Executing

this macro, the entire macro text is replaced by the specified IO value.

Users can create own namespaces and add macros and constant values in all namespaces

available.

Please note that no macro or constant can be added to the root namespace!

250/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

3.2.5. Constant strings

As you may already have noticed, strings within an macro's argument list must be delimited

by the ' (APOSTROPHE-QUOTE, hex 027) character.

The strings are assumed to be of ASCII or UTF8 format. Every non ASCII character and the

' and % characters must therefore be replaced by there hex representation.

Example:

' The %25 and the %27 are not allowed in a string'

will be replaced by:

The % and the ' are not allowed in a string

A string may include line breaks.

3.2.6. Argument Lists

3.2.6.1. Basic Concept

It is important to understand the concept of argument lists. The basic idea starts with the

CGI argument list, a well formed list of pairs. Each pair consist of an argument name and an

argument value. The details of internal representation can be found in 3.5.1. Internal Repre-

sentation of Argument Lists.

We have to deal with three argument lists:

1. The global argument list is the list that holds the arguments passed to the MSP using CGI

argument notation. This argument list can be modified by so called filter macros.

2. The local argument list is an auxiliary argument list used to store values or a copy of the

global argument list. The local argument list is also called the local variable list (because

that is what it is used for).

3. The macro argument list is the current argument list passed to a macro. The macro argu-

ment list can be formed by the values of other macros (macro functions and constant

macros) and constant values like numbers and strings. It is enclosed by brackets.

© 2008 mocom software GmbH & Co KG 251/399

VII. mCAT HTTPD Server mCAT 2.20

There is a special character, the asterix '*', that can be used as the first argument or the en-

tire argument list of a macro. If used, it tells a macro to use a copy of the global argument

list as a macro argument list. This feature allows to call a macro using the global argument

list instead of passing explicit arguments.

Note:

To understand the following example, you should know that the paste keyword evaluates the

macro argument list and concatenate the results into a string that is inserted instead the

macro (see 3.2.7.3. paste / tolower / toupper). You also should know that you can access ar-

guments of the global argument list by name using square brackets around the arguments

name.

Example:

Assume we have a file called test.htm. We request it using the following URL:

252/399 © 2008 mocom software GmbH & Co KG

Figure 24: Global and macro argument list

@@paste('Hello World')

maintain.htm

global argument list

http://www.myserver.com/maintain.htm?name=Joe&surname=Sixpack

macro argument list

keyword paste

mCAT 2.20 VII. mCAT HTTPD Server

http://172.31.31.50/test.htm?name=Joe&surname=Sixpack

Test.htm may include:

<H1>@@paste('this',' ','is',' ','paste',' ','in',' ','action')</H1>

This evaluated to:

<H1>this is paste in action</H1>

Simple and stupid example, just to show how paste works. But now:

<H2>@@paste('Mr. ',[name],' ',[surname])</H2>

Is replaced by:

<H2>Mr. Joe Sixpack</H2>

And using the '*', we get:

DEBUG=@@paste(*)

DEBUG=JoeSixpack

Please note that no spaces or separators are inserted!!

This example may not make a lot of sense but you will see that the '*' argument is a very

good helper when it comes to process more complex CGI-Requests. To give you an idea,

replace the paste keyword in the example by some meaningful function. Lets assume you

have written a function to log all the people who have done some maintenance with your in-

stallation or machine. Every technician who does maintenance has to enter a name and date

of last maintenance. Lets assume you registered this function as 'maintlog.add':

The technician has to leave his name in an HTML form. When he submit this form the data

is passed to the MSP file:

http://172.31.31.50/maintain.htm?name=Joe&surname=Sixpack

Your maintain.htm may now contain:

@@if (@maintlog.add(*),'OK')

<H1>Thanks, Mr. @@paste([name],' ',[surname])</H1>

@@else

<H1>Sorry, could not register. Try again!</H1>

© 2008 mocom software GmbH & Co KG 253/399

VII. mCAT HTTPD Server mCAT 2.20

@@endif

The syntax definition for macro argument lists is:

value := <macro> | <constant_value> | <string_const> | <number>

argument := <value>

first_arg := '*' | <argument>

argument_list := '(' {<first_arg> {',' <argument>}} ')'

3.2.6.2. Accessing Global Arguments

There are a few special sequences to access properties from the global argument list when

creating a macro's argument list:

– [?] is replaced by the number of arguments in the list

– [<name>] is replaced by the value of argument <name> of the list

– [<index>] is replaced by the value of argument at position <index>

3.2.6.3. Accessing Local Variables

There are a few special sequences to access properties from the local variable list when cre-

ating a macro's argument list

– {?} is replace by the number of arguments in the list

– {<name>} is replaced by the value of the argument <name> of the list

– {<index>} is replaced by the value of argument at position <index>

3.2.7. Keywords

3.2.7.1. Local / Argv

The keyword local is used to add a local variable to the local variable list. To refer to a local

variable, see 3.2.6.3. Accessing Local Variables. The keyword argv allows to set / override a

value in the global argument list. The syntax is identical for both keywords.

The syntax is

 @local(<name>,<value>)

254/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

Example:

 @@local('myaddr',[addr])

create a local variable named 'myaddr' and assigns it the value of the argument (from the

global argument list) 'addr'.

3.2.7.2. Load / Store

Using store it is possible to copy the argv argument list to local, the list of local variables.

Please note that local is overwritten and all existing variables are deleted.

Using load it is possible to copy the list of local variables to argv argument list. Please note

that argv is overwritten and all existing variables are deleted.

Example:

<!-- presume we are called with t=5 -->
@@store
@@paste('temperature=',{t},'°C')

The result will be “temperature=5°C”.

3.2.7.3. paste / tolower / toupper

Those keywords paste the arguments from the macro argument list into the output. Paste

does not modify the values, tolower converts all values to lower case and toupper converts

all values to upper case.

@@toupper('Hello out there')

will be replaced by

HELLO OUT THERE

3.2.7.4. foreach / for / endfor

There are two forms of the for statement.

The general form is

@@for('<varname>',<from>,<to>{,<step>})

varname = name of the for counter variable (created in namespace 'var).

from = start value

to = end value

© 2008 mocom software GmbH & Co KG 255/399

VII. mCAT HTTPD Server mCAT 2.20

step = increments per step (optional, default=1)

@@endfor

If to is smaller than from, the counter is decremented instead of incremented by step! If the

counter variable must be refered inside the for loop, the namespace var must be added:
<!-- list all arguments -->
@@for('i',0,[?])

@@paste([%var.i])
@@endfor

The less general version of for / endfor is foreach. It is preset to iterate through the argu-

ments of the global argument list. The counter variable for a foreach / endfor loop is var.for.

Foreach statements can not be nested.
<!-- list all arguments -->
@@foreach

@@paste([%var.for])
@@endfor

Please note that both examples do the same job!

3.2.7.5. if / elseif / else / endif / not

The syntax for the if statement is pretty straight forward:

@@if(<arg1>,<arg2>) or @@if(<arg>)

...

@@elseif(<arg1>,<arg3>) or @@elseif(<arg>)

...

@@else

...

@@endif

If two arguments are given, they are compared literally and case sensitive. If only one argu-

ment is given, the expression is true if the argument exists and its value is neither 0 nor an

empty string.

The logic value can be inverted by use of the keyword not:

@@if(@not(<arg1>,<arg2>))

256/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

or

@@if(@not(<arg>))

3.2.7.6. while / endwhile

The while keyword uses the same logical expression syntax if uses. While / endwhile forms

a loop construct:

@@while (<arg1>,<arg2>) or @@while(<arg>)

...

@@endwhile

The loop is entered and executed as long as the logical expression in the while statement is

true.

3.2.7.7. repeat / until

The until keyword uses the same logical expression syntax if uses. Repeat / until forms a

loop construct:

@@repeat

...

@@until (<arg1>,<arg2>) or @@until(<arg>)

The loop is allways entered. It is executed until the logical expression in the until statement

becomes true.

Note: The constructs for, while, repeat and if can be nested. The nesting level is limit-
ed to 8 levels.

3.2.8. Functions and Filters

The basic difference between a function and a filter is that a function returns a visible string

that replaces the function statement. A filter modifies or replaces the global argument list

and is removed from the source file:

@@int.add('1','2') is replaced by 3

In contrast,

© 2008 mocom software GmbH & Co KG 257/399

VII. mCAT HTTPD Server mCAT 2.20

@@xio.vecein(%xio.TSM,'1')

loads global argument list with the i/o values of module '1' / TSM-Bus.

In both cases the macro text itself is removed from the html file.

3.3. A few Considerations on HTML

Among the various HTML statements there are three meta tag statements that are very im-

portant to fine tune your MSP pages:

<META HTTP-EQUIV="cache-control" content="no-cache">

This meta tag should be included in every MSP page. It tells a browser to read the page all-

ways from its source (our mCAT HTTPD-Server) instead of using a cached version of the

page. If this tag is not used, you may see an older cached version of your MSP instead of

the current version.

<META HTTP-EQUIV="Refresh" CONTENT="<timeout>; URL=<url>">

This meta tag can be used to automatically refresh the website with a fixed period. The argu-

ment <timeout> specifies the refresh cycle time in seconds. Setting <timeout> to 0, will force

an immediate reload! This statement can also be used to switch conditionally to another

page using the if statement! If URL is given, the specified page is loaded. If no URL is given,

the current page is reloaded.

<META name="ROBOTS" content="NOINDEX, NOFOLLOW">

It is also a good idea to prohibit search engines to index your pages (if they ever get access

to the node).

258/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

3.4. Intrinsic Extensions

3.4.1. Intrinsic Namespace 'xio'

Group Function F Comment
Exploration

and Config-

uration

xio.getcfg(bus) X load the global argument vector with the ID's of

the modules attached to bus.
xio.isdigital(bus,module) True if module is a digital i/o module
xio.isinput(bus,module) True if module is a input module

xio.isanalog(bus,module) True if module is a analog i/o module
xio.iscount(bus,module) True if module is a event counter i/o module
xio.ispos(bus,module) True if module is a position i/o module
xio.ispwm(bus,module) True if module is a PWM i/o module
xio.isfreq(bus,module) True if module is a frequency counter i/o mod-

ule
xio.isfloat(bus,module) True if module is a floatpoint variable table
xio.isint(bus,module) True if module is a integer variable table

xio.info(bus,module,chan,i

tem)

Read a information item (see ExpressIo docu-

mentation)
xio.cfg(bus,module,chan,it

em,value)

Write a configuration item (see ExpressIo doc-

umentation)
Read/Write xio.vecin(bus,module) X load the global argument vector with the io of

module attached to bus.
xio.vecout(bus,module,..) Output the values in the argument list to mod-

ule attached to bus.
xio.in(bus,module,chan) Read a single channel from.

xio.out(bus,module,chan,v

alue)

Output a single channel.

xio.inobj(name) Read a single IOOBJECT by Name.
xio.outobj(name,value) Write a single IOOBJECT by Name.

xio.outlist(bus,module,..) Accepts a list of the outputs to be set. Needed

to process Form data (input)

(bus=1,module=2,A1=1, A5=0)
xio.outcheck(bus,module,.

.)

Accepts a list of the outputs to be inverted.

Needed to process Form data (checkbox)

(bus=1,module=2,A1=1, A5=1)

© 2008 mocom software GmbH & Co KG 259/399

VII. mCAT HTTPD Server mCAT 2.20

Group Function F Comment
Miscella-

neous

xio.triggerwd(on) If on is true ('1'), a background process ist

started to trigger all outputs to prevent watch-

dog action. The process can be disabled by

calling this function with on = ' 0'
Constant xio.CPU A constant identifying the CPU bus

xio.TSM A constant identifying the TSM bus
xio.I2C A constant identifying the I2C bus
xio.ASI A constant identifying the ASI bus
xio.CAN A constant identifying the CAN bus

xio.SFT A constant identifying the SFT (Software) bus

Table 7: HTTPD Intrinsic functions: ExpressIO

3.4.2. Intrinsic Namespace 'int'

260/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

Group Function Replacement Comment
Arithmetic

int.add(a,b) a + b
int.sub(a,b) a - b
int.mul(a,b) a * b
int.div(a,b) a / b

int.mod(a,b) a modulus b
int.neg(a) - a

Shift
int.shl(a,b) a << b
int.shr(a,b) a >> b

Bitwise logic
int.ldbit(a,b) (a & (1 << b)) >> b Inserts a 1 if bit b is 1 else 0
int.stbit(a,b,c

)

(((c & 1) << b) | (a &

(1<<b))) >> b
bit 0 of c is inserted at bit posi-

tion b in a
int.or(a,b) a | b bitwise and
int.and(a,b) a & b bitwise or
int.xor(a,b) a ^ b bitwise exclusive or
int.cpl(a) ~ a bitwise invert

Logic
int.gt(a,b) if (a > b) 1 else 0
int.ge(a,b) if (a >= b) 1 else 0
int.lt(a,b) if (a < b) 1 else 0
int.le(a,b) if (a >= b) 1 else 0
int.eq(a,b) if (a = b) 1 else 0
int.ne(a,b) if (a <> b) 1 else 0
int.not(a) if (a = 0) 1 else 0

int.valid(a) if (is_integer(a)) 1 else 0
Constants

int.true 1
int.false 0

Miscellaneous
int.tohex(a) The hex value of 'a' We use C-Like encoding like

0x66f6

Table 8: HTTPD Intrinsic Functions: INT

© 2008 mocom software GmbH & Co KG 261/399

VII. mCAT HTTPD Server mCAT 2.20

3.4.3. Intrinsic Namespace 'system'

Group Function Replacement Comment
EEPROM Read/

Write

system.read(

a)

value of cell 'a'

system.write(

a,b)

none Write value 'b' into cell 'a'

Miscellaneous system.re-

set()

none Schedule Reset. The reset will

be executed when the current

page is transfered completely to

the host.
Constant system.ver-

sion

HTTPD-Server version

Table 9: HTTPD Intrinsic Functions: SYS

3.5. Custom Extensions

The description of user extensions is related to the Example in 3.5.7. A Customer supplied

MSP-Function Example.

3.5.1. Internal Representation of Argument Lists

Any argument list, no matter if it is the global, local or macro argument list, is internally rep-

resented in a C data structure called ARGV. The structure holds an integer value argc that

holds the number of arguments in the list. The vector argv holds the argument pairs. Every

argument consist of an argument name and an argument value. These values are C strings,

no matter if they hold numbers or real strings. Please note that name and value are point-

ers. The values are allocated from the httpd's memory pool. If you add new arguments, you

MUST use the API functions provided (see 3.5.5. The HTTDP API), because they will auto-

matically allocate memory from the pool.

#define MAX_ARGC 40

typedef struct {
 UTF8 *name; // string, name of the argument
 UTF8 *value; // value
} ARG;

typedef struct {
 UNSIGNED argc; // number of arguments in index
 ARG retval; // return value, not used for functions
 ARG argv[MAX_ARGC];

262/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

} ARGV;

3.5.2. The Server Handle

The mCAT HTTPD servers are logically independent program units. Adding a functionality

has only affect to one server. If there is more than one server, the new functionality must be

added to each server individually. Most API functions require a server handle (sometimes re-

ferred to as sid for server id)

The API-Function

sid = HTTPDQuery("MyWebSite");

returns a handle that refers to a specific server. Please note that the name used in this query

is the name of the server as agreed on in config.db – in this example the name is MyWeb-

Site.

If the returned sid is NULL, the server was not found!

3.5.3. Registering a Namespace

To implement new functions, filters or constant macros it is recommended to create a new

namespace first. All created entities will be stored there. This makes it easy to prevent nam-

ing conflicts. To create a new namespace, use the call:

HTTPDCreateNamespace(sid,"my");

In this example we create the root namespace my. If we register a function in this names-

pace later and the functions name is power, the function will be available from MSP as

my.power().

3.5.4. Adding Macros

3.5.4.1. Adding Constant Macros

There are three API functions available to add constant macros:

INTEGER HTTPDAddNumConst (HTHANDLE sid,UTF8 *ns,UTF8 *name,INT32 value);
INTEGER HTTPDAddStringConst (HTHANDLE sid,UTF8 *ns,UTF8 *name,UTF8 *value);
INTEGER HTTPDAddFloatConst (HTHANDLE sid,UTF8 *ns,UTF8 *name,double value);

All those functions take the server id (sid), the namespace (ns) and the name of the new

constant macro. They differ in the data type of the constant only.

© 2008 mocom software GmbH & Co KG 263/399

VII. mCAT HTTPD Server mCAT 2.20

3.5.4.2. Adding Function and Filter Macros

From the outside, registering a function or a filter looks very similar:

INTEGER AddFunction (HTHANDLE sid,UTF8 *ns,UTF8 *name,void *call,void *data,INTE-
GER argc,UTF8 **argnames);

INTEGER AddFilterFunction (HTHANDLE sid,UTF8 *ns,UTF8 *name,void *call,void
*data,INTEGER argc,UTF8 **argnames);

Again, the functions take the server id (sid), the namespace (ns) and the name of the new

macro. The argument call is a pointer to the user supplied function that implements the new

macro. The pointer data is an user supplied pointer to some private data. This pointer is

passed to the implementation function for the programmers convenience. The integer argc

tells the system how many arguments the user supplied function expects in an argument

vector. Finally, argnames is a pointer to an array of argc strings providing the names of the

expected arguments.

In our example, we expect one argument and we name it a1.

const char *arglist[] = {
 "a1"
};

We use the function HTTPDAddFunction to register the function then:

HTTPDAddFunction(sid,"my","power",power2,NULL,1,arglist);

3.5.5. Writing Function and/or Filter Macros

The major difference between a function and a filter macro is:

1. A filter macro always returns NULL.

2. A filter macro may modify one or more arguments from the incoming argument list.

3. A function macro returns a meaningfully value (or NULL on fail)

4. A function never modifies the incoming argument list.

Here we have an example for a macro function. It reads the argument “a1” by name from the

argument list (you should read arguments by name where possible). Then it calculates the

return value (accu = accu * accu) and returns the result by use of HTTPDAllocFormatted().

Please note that HTTPDAllocFormatted() is a local wrapper function you have to provide.

You can copy this function from the example (we need the include <stdarg.h> to implement

the function, do not forget to include it).

264/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

Why must we use HTTPDAllocFormatted()? This function helps us in two ways. First it con-

verts the binary value into a formatted string (all printf typical formating options are available,

including float point types). Second and even more important, this function will create the for-

matted string in the HTTPD servers memory pool. This is very important, because the return

value must survive the functions runtime. Local variables, even of type static, can not be

used for this purpose!

UTF8 *power2(INTEGER sid, ARGV *args, void data)
{
 long accu;

 data = data; // not used in this example

 if (args) {
 // get argument
 accu = atol(CGIGetArgByName(args,"a1"));
 // calc power of 2
 accu = accu *accu;
 // return as a visible string
 return HTTPDAllocFormatted(sid,"%ld",accu);
 } /* endif */

 return NULL;
}

With filter macros, the handling is a bit more complex. Here is an example from the intrinsic

library, implementing an ExpressIO function. The function returns for each module of a bus

the module name or an empty string in a way that the index into the array is equal to the

modules address. See the example “5-MSP” for details.

PRIVATE UTF8 *xiogetcfg(INTEGER sid, ARGV *args, void *data)
{
 INTEGER i, // some helper
 bus; // the selected bus
 BINFO businfo; // a BINFO structure of ExpressIO
 UTF8 *value; // a string helper

 // fetch “bus” from the argument list
 bus = atol(CGIGetArgByName(args,"bus"));

 // Clear argument list
 CGIClearArgList(args);

 // get businfo structure
 if (DrvGetBusInfo(bus,&businfo,sizeof(BINFO))) {
 // bus is invalid form here on!!

 // scan all possible modules of the given bus
 for (i=0;i<businfo.slots;i++) {

 // read module name
 value = (char *)IOInfo(bus,i,0,INFO_GET_IDENT_STRING,0);

© 2008 mocom software GmbH & Co KG 265/399

VII. mCAT HTTPD Server mCAT 2.20

 if (value == NULL) {
 // if nothing found, use a empty string

 value = "";
 } /* endif */

 // add to argument list. Value is empty
 // for non-existing modules.

 CGIAppendArg(sid,args,businfo.name,value);
 } /* endfor */
 } /* endif */

 return NULL; // FILTER RETURNS EMPTY STRING!!
}

There are several ways to implement macros, but whatever your approach is, some care has

to be taken:

1. Never try to override an argument using functions like strcpy! The names and values

sould be assumed to be read only. Change them using the CGI-Api functions only.

2. Never return a pointer to static memory holding a dynamic (calculated) result! You can re-

turn constant string value (“This is a true constant string value”) or you have to use HTTP-

DAllocFormatted() to create a valid string.

3. Never try to return a local variable.

4. Never use ThreadSleep / ThreadDelay or a long running loop in an macro function, be-

cause while the function is executed, the related HTTPD server is blocked!

3.5.6. A Customer supplied MSP-Function Example – The complete Source

This example can be found in <mcatdir>/cc/httpd/6-msp.

/*
 * classic
 *
 * (c) 2003 mocom software GmbH & Co KG
 *
 * File: mspfunc.c
 *
 * Created: 05.12.2003 12:15 VG
 * --
 *
 * History:
 *
 * date time author comment
 * --
 * 05.12.2003 12:15 VG
 * --
 */

266/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

#include <mcat.h>
#include <simpleio.h>
#include <httpdlib.h>
#include <stdarg.h>

// NOTE THAT THIS IS AN INIT, NO TASK!

// A wrapper to the HTTPDAllocFormattedV function.
INTEGER HTTPDAllocFormatted(INTEGER sid, char *fmt, ...)
{
 va_list argp;
 va_start(argp,fmt);

 return HTTPDAllocFormattedV(sid,fmt,argp);
}

// the user supplied function calculates the power
// of a value.
UTF8 *power2(INTEGER sid, ARGV *args)
{
 long accu;

 if (args) {
 // get argument
 accu = atol(CGIGetArgByName(args,"a1"));
 // calc power of 2
 accu = accu *accu;
 // return as a visible string
 return HTTPDAllocFormatted(sid,"%ld",accu);
 } /* endif */

 return NULL;
}

const char *arglist[] = {
 "a1"
};

INTEGER TaskInit (IMD *imd)
{
 int sid;

 // find the website you need.
 // if you want to register for more than one websites
 // you must repeat the registration for every single website.
 sid = HTTPDQuery("MyWebSite");
 if (sid) {
 // we found it, now create a namespace "my"
 HTTPDCreateNamespace(sid,"my");
 //in the namespace, register the function "power"
 HTTPDAddFunction(sid,"my","power",power2,NULL,1,argument list);
 } else {
 kprintf("FAIL (%d)\n",sid);

© 2008 mocom software GmbH & Co KG 267/399

VII. mCAT HTTPD Server mCAT 2.20

 } /* endif */

 return -1;
}

3.5.7. The Argument List Handling API

 INTEGER CGIGetIndexByName (ARGV *arglist,UTF8 *name);

Returns the index of the argument named name into the argument vector (see 3.5.1. Internal

Representation of Argument Lists). If it is not found in the argument list, -1 is returned.

 UTF8 *CGIGetArgByName (ARGV *arglist,UTF8 *name);

Fetch a value by name.

 UTF8 *CGIGetArgByIndex (ARGV *arglist,INTEGER index);

Fetch an argument by its index.

 INTEGER CGIAddArgByName (HTHANDLE sid,ARGV *arglist,UTF8 *name,UTF8 *value);

Add an argument by name. If the name does not exist in the given argument list, the

name/value pair is appended. If it exists, value replaces the value of the existing argument.

Returns FALSE on fail.

 INTEGER CGIAddArgByIndex (HTHANDLE sid,ARGV *arglist,INTEGER index,UTF8
*name,UTF8 *value);

Add an argument by index. No name checking is done. If index is out of range (less than 0

or greater than argc + 1), the functions fails and returns FALSE.

 INTEGER CGIAppendArg (HTHANDLE sid,ARGV *arglist,UTF8 *name,UTF8 *value);

Appends an argument to the end of the argument list. Returns FALSE on fail.

 void CGIClearArgList (ARGV *arglist);

Clear all the argument vector and set argc = 0.

 INTEGER CGIPresetArgList (ARGV *arglist,INTEGER argc,UTF8 **argnames);

Presets an argument list a given table of names. If you do so and add names later by use of

CGIAddArgByName() the arguments will be in exactly the same order as they are in the ta-

ble argnames. Please do not forget to set argc exactly to the number of strings in argnames.

268/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VII. mCAT HTTPD Server

4. The mCAT-HTTPD-Server traditional CGI-Processing

This example can be found in <mcatdir>/cc/httpd/2-classic. You can use the CGI-Api func-

tions to fetch the arguments. Also use CGIPrint() to insert HTML-Code into the output buffer.

The buffer is send after its execution is complete.
/*
 * classic
 *
 * (c) 2003 mocom software GmbH & Co KG
 *
 * File: classic.c
 *
 * Created: 04.12.2003 11:53 VG
 * --
 *
 * History:
 *
 * date time author comment
 * --
 * 04.12.2003 11:53 VG
 * --
 */
#include <mcat.h>
#include <simpleio.h>
#include <httpdlib.h>
#include <stdarg.h>

INTEGER CGIPrint(INTEGER sid, char *fmt, ...)
{
 INTEGER len;

 va_list argp;
 va_start(argp,fmt);

 len = CGIVPrint(sid,fmt,argp);

 va_end(argp);

 return len;
}

UTF8 *my_cgi_function(INTEGER sid, ARGV *args)
{
 UTF8 *hallo = NULL;

 if (args) {
 hallo = CGIGetArgByName(args,"what");
 } /* endif */
 if (hallo == NULL) {
 hallo = "ERROR IN CGI 'my_cgi_function'\n";
 } /* endif */

 CGIPrint(sid,"<html>\n");
 CGIPrint(sid," <head>\n");
 CGIPrint(sid," <title>mCAT ExpressIO WEB interface</title>\n");
 CGIPrint(sid," <META HTTP-EQUIV=\"reply-to\" content=\"info@elzet80.de\">\n");

© 2008 mocom software GmbH & Co KG 269/399

VII. mCAT HTTPD Server mCAT 2.20

 CGIPrint(sid," <META name=\"ROBOTS\" content=\"NOINDEX, NOFOLLOW\">\n");
 CGIPrint(sid," </head>\n");
 CGIPrint(sid," <body bgcolor=\"#FFFFFF\">\n");
 CGIPrint(sid," <table border=0 cellspacing=5 cellpadding=5>\n");
 CGIPrint(sid," <tr>\n");
 CGIPrint(sid," <td width=\"100\">\n");
 CGIPrint(sid," <IMG ALT=\"ELZET80\" SRC=\"/img/elzetlogo.gif\"
border=\"0\">\n");
 CGIPrint(sid," </td>\n");
 CGIPrint(sid," <td width=\"600\">\n");
 CGIPrint(sid," <h1>Dieses CGI sagt '%s'</h1>\n",hallo);
 CGIPrint(sid," </td>\n");
 CGIPrint(sid," <tr>\n");
 CGIPrint(sid," </table>\n");
 CGIPrint(sid," </body>\n");
 CGIPrint(sid,"</html>\n\n");

 return NULL;
}

const char *arglist[] = {
 "what"
};

INTEGER TaskInit (IMD *imd)
{
 int sid;

 sid = HTTPDQuery("VIEW");
 if (sid) {
 HTTPDAddFunction(sid,"cgi","classic",my_cgi_function,NULL,1,argument list);
 } else {
 kprintf("FAIL (%d)\n",sid);
 } /* endif */

 return -1;
}

270/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VIII. MCAT Serial Driver

VIII. MCAT Serial Driver

1. Introduction

The serial driver for mCAT V2 is much the same as the one some customers are already us-

ing with mCAT V1. However, the mCAT V2 version was enhanced carefully to support both a

higher usability and a higher system throughput.

The most powerful new feature is the ComSetHdl function allowing a programmer to supply

his own receive code without having the need to completely rewrite the serial stuff. However,

the quite powerful message handler included with the previous versions of SerDrv is still

available and will be used as a default handler.

SerDrv will now read the EEPROM to get default baudrate, selected parity and handshake

mode, but the calls concerning these functions are still available (ComSetSpeed, ComSetHs,

ComSetMode).

2. Basic Operation

The serial line driver »SerDrv« has two different programmers interfaces:

• A Shared Library API used to configure the driver

• A message based interface to operate the driver

2.1. Configuration

The driver can be configured by setting up the EEPROM and / or API calls, whichever is

more suitable.

2.1.1. EEPROM Configuration

The EEPROM words 5 and 6 are used to configure serial port 0 (COM1) and words 7 and 8

are used for port 1 (COM2). We will describe only words 5 and 6 as 7 and 8 are similar.

© 2008 mocom software GmbH & Co KG 271/399

VIII. MCAT Serial Driver mCAT 2.20

EEPROM lo-
cation SerDrv Comment

WORD 5, LSB Baudrate Baudrate for channel 0

WORD 5,

MSB, LSN
Handshake

Handshake (NO, RTS/CTS, XON/XOFF, HALFDU-

PLEX) for channel 0

WORD 5,

MSB, MSN
Interface Interface (RS232, RS485 (NET-A7 SER1 only))

WORD 6, LSB Bits per Char Bits per Character (7 or 8) for channel 0

WORD 6, MSB Parity
Parity (ODD,EVEN, NONE, MARK, SPACE) for chan-

nel 0

EEPROM lo-
cation SerDrv Comment

WORD 7, LSB Baudrate Baudrate for channel 0

WORD 7,

MSB, LSN
Handshake

Handshake (NO, RTS/CTS, XON/XOFF, HALFDU-

PLEX) for channel 1

WORD 7,

MSB, MSN
Interface Interface (RS232, RS485 (NET-A7 SER1 only))

WORD 8, LSB Bits per Char Bits per Character (7 or 8) for channel 0

WORD 8, MSB Parity
Parity (ODD,EVEN, NONE, MARK, SPACE) for chan-

nel 1

Baudrate [bit/s] SerDrv [constant values]
1200 comBR1200

2400 comBR2400

4800 comBR4800

9600 comBR9600

19200 comBR19200

38400 comBR38400

52600 comBR57600

72800 comBR72800

272/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VIII. MCAT Serial Driver

Handshake SerDrv [constant
values] Comment

NO comNOHS No handshake at all

RTS/CTS comRTS
Receiver signals request-to-send

using the RTS line.

XON/XOFF comXON

Receiver signals handshake states

„ON“ + „OFF“ by use of the ASCII

charachters XON + XOFF

HALFDUPLEX comHalf
Halfduplex only valid for NET-A7

using the RS485 interface

Interface SerDrv [constant
values] Comment

RS232 com232 Set RS232

RS485 com485

Set RS485, this is only valid for

SER1 on NET-A7 (make sure to

also configure your hardware cor-

rectly to use RS485)

Bits per Char SerDrv [constant values]
7 com7BPC

8 com8BPC

Parity SerDrv [constant values]
NO comNONE

EVEN comEVEN

ODD comODD

MARK comMARK

SPACE comSPACE

© 2008 mocom software GmbH & Co KG 273/399

VIII. MCAT Serial Driver mCAT 2.20

2.1.2. API based Configuration

There is always the possibility to change the configuration using API calls. This may be use-

ful if:

• You wish to increase / decrease the baudrate on the fly (as some serial protocols do)

• You wish to insure that no one can change parameters accidentally

Please refer to the function reference to get more detailed information.

2.1.3. Configuring »SimpleHandler«

mCAT uses a message based approach to maintain inter-task communication. The serial

line driver supports message passing allowing a task to wait for serial events without con-

suming (valuable) CPU time.

To send something is easy. A block of data is copied into a ComWriteMsg message struc-

ture and sent to the driver. The data will be sent according to the baudrate, mode and hand-

shake the driver is configured for.

Receiving is a little bit more complex. An empty message is sent to the receiver and the re-

ceiver will fill this message. However, there are some questions to answer:

At what point can a message be said to be a complete message?

How can a »start of message« be found?

How many bytes are allowed to be filled into a buffer?

To cover the more common solution to these problems an internal receive handler called the

SimpleHandler is provided. It can be configured to:

Wait for a synchrony character to come (start of message, the sync char will not be included

into the messages data field)

Close the message and send it back if one of the two terminal characters occurs (end of

message)

274/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VIII. MCAT Serial Driver

Close the message and send it back if either a character time-out or a message time-out oc-

curs.

And, finally, close a message and send it back if the globally (ComSetLen) preset message

length or the current message length is reached

Please refer to the function reference for more information.

2.2. Operation

To operate the serial lines, it is necessary to set up the driver, start operation and maintain

the message traffic.

© 2008 mocom software GmbH & Co KG 275/399

VIII. MCAT Serial Driver mCAT 2.20

2.2.1. Message Formats

The definitions can be found in the C-header »ser.h«. The constant BUFSIZ is set to 256. To

change it, simply define it before including »ser.h«.

#define BUFSIZ 512
#include <ser.h>

typedef struct {
MSG msg; /* standard mCAT message header */
short len; /* length of the data field */
char body[BUFSIZ]; /* data field */

} ComWriteMsg;

typedef struct {
MSG msg; /* standard mCAT message header */
short limit; /* maximum length of body */
short len; /* number of received characters */
char body[BUFSIZ]; /* data field */

} ComReadMsg;

2.2.2. Requests/Replys

An application wanting to use the serial driver will always send requests to the driver and the

driver will always send replies.

2.2.3. User Supplied Rx Handler

If »SimpleHandler« does not match the applications demands, a user written handler

is supported! Using the function ComSetHdl will attach a receive character handler to

a line. This code will be called every time a receive interrupt occurres. The user sup-

plied handler can be written using:

Assembly language

Toshiba C V1.03

276/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VIII. MCAT Serial Driver

Toshiba C V4.xx (__cdecl calling convention)

Toshiba C V4.xx (__adecl calling convention)

The users function can decide individually which character should be included into the buffer

and which not. It can calculate and check a checksum. In short, it can do almost anything

necessary to maintain an ISO layer-2. However, a user should be careful: The handler will

be called from within an interrupt routine. The code should be short, fast and should not try

to share variables with other functions.

2.2.4. Buffer Usage

To improve the performance of the serial line driver it is recommended to send a threshold of

at least 2 messages to the receiver. This will make a new buffer available for the receiver as

soon as the previous one was passed to the application! With higher baudrates and short

messages more buffers are even better. However, the driver will maintain a small fifo buffer

to save characters received while it has no buffer to place them in.

3. Function Reference

The first parameter of all functions is a com channel selector. It must be either 1 for SER0 or

2 for SER1. Future members of the Toshiba TLCS900 family may have more serial lines and

will be supported as necessary.

3.1. Basic Functions

ComSetSpeed(short com, short speed);

Function: Set the baudrate for a given channel. The EEPROM will not be changed.

© 2008 mocom software GmbH & Co KG 277/399

VIII. MCAT Serial Driver mCAT 2.20

Parameter: com 1=SER0, 2=SER1

speed = comBR300 ... comBR76800

Please note that 300 baud is not available on the ELZET80 TLCS900H
core CPU's (BIT900, TSM900, NET900H, NET900H+)

Return: -/-

ComSetMode(short com, short mode, short parity);

Function: Set the mode and parity for a given channel. The EEPROM will not be
changed.

Parameter: com 1=SER0, 2=SER1

mode = com7BPC, com8BPC, com9MARK, com9SPACE

parity = comNONE, comODD, comEVEN

Return: -/-

ComSetHs(short com, short handshake);

Function: Set the handshake protocol for a given channel. The EEPROM will not be

changed.

Parameter: com 1=SER0, 2=SER1

handshake = comNOHS, comRTS, comXON, comHALF

If RTS/CTS handshake is used ComSetTimeout should be used with a mes-

sage timeout of 255. Please refer to ComSetTimeout.

comHALF can only be used with com485 on NET-A7 SER1.

Return: -/-

278/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VIII. MCAT Serial Driver

ComSetInterface(short com, short interface);

Function: Set the interface for a given channel. The EEPROM will not be changed.

Parameter: com 1=SER0, 2=SER1

handshake = com232, com485

Be aware: com485 is only valid on NET-A7 SER1. It must be used with Hand-

shake set to comHALF. Make sure that your hardware is configured cor-
rectly to use com485.

Return: -/-

ComOperation(short com, short on);

Function: Enable operation for a given channel. Interrupts will be attached and op-
eration will start.

Parameter: com 1=SER0, 2=SER1

on = TRUE;

Return: -/-

3.2. SimpleHandler

There are some functions to configure the »SimpleHandler« if needed. A user supplied

handler can be attached using the ComSetHdl call. By default the driver will try to fill the

message until it is full.

ComSetSyncChar(short com, short char);

Function: Set the synchronization character.

© 2008 mocom software GmbH & Co KG 279/399

VIII. MCAT Serial Driver mCAT 2.20

Parameter: com 1=SER0, 2=SER1

char = 0 no sync char

char = comTAG + 'X' Set sync char to »X«

Return: -/-

ComSetEnd1Char(short com, short char);

Function: Set first of two terminal characters.

Parameter: com 1=SER0, 2=SER1

char = 0 no terminal char 1

char = comTAG + 'X' set terminal char 1 to »X«

Return: -/-

ComSetEnd2Char(short com, short char);

Function: Set second of two terminal characters.

Parameter: com 1=SER0, 2=SER1

char = 0 no terminal char 2

char = comTAG + 'X' set terminal char 2 to »X«

Return: -/-

ComSetAddChar(short com, short char);

Function: Set the number of characters to include in the message after a terminat-
ing character has been received.

Parameter: com 1=SER0, 2=SER1

char = n number of characters to add to message

280/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VIII. MCAT Serial Driver

Return: -/-

ComSetLenLimit(short com, short len);

Function: Set a global msg length limit. If this limit is reached, the message is
send back to the application.

Parameter: com 1=SER0, 2=SER1

len = 0..32768

Return: -/-

ComSetCharSet(short com, void *set);

Function: Tell the driver only to accept char that are member of a set.

Parameter: com 1=SER0, 2=SER1

set = pointer to a bitmap (256 bits = 8*32 byte). For every valid char
there should be the corresponding bit set.

Return: -/-

ComSetTimeouts(short com, short char_timeout, short msg_timeout);

Function: Set the time-outs.

Parameter: com 1=SER0, 2=SER1

char_timeout = the maximum time in units of 10ms that is allowed be-
tween two consecutive characters.

msg_timeout = the maximum time in units of 10ms that is allowed for a
entire message to be received.

© 2008 mocom software GmbH & Co KG 281/399

VIII. MCAT Serial Driver mCAT 2.20

For both parameters the valid range is 0..255. 0 will disable timeout
checking, 255 will disable too, but keep the timing unit running. This op-
tion can (and should) be used to guard the RTS/CTS handshake!

Return: -/-

ComSetHdl(short com, short (*hdl)(ComReadMsg *msg, char c, char err);

Function: Attach a new, user supplied RX-character handler.

Parameter: com 1=SER0, 2=SER1

hdl = pointer to the users function

Return: -/-

The users function must only return one of two valid return codes:

comWaitNext: Character read and no action. Waiting for the next char.

comReady: Message complete, please reply to application.

All other return values will be interpreted as error code and the message will be send back!

The return code will be reported in ComReadMsg.msg.error in those cases.

3.3. Auxilary Functions

ComRxFlush (short com);

Function: Clear the RX fifo and the current message.

Parameter: com 1=SER0, 2=SER1

Return: -/-

282/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VIII. MCAT Serial Driver

ComTxFlush (short com);

Function: Clear the current TX message and send it back to application.

Parameter: com 1=SER0, 2=SER1

Return: -/-

3.4. Modem Line Handling

ComSetDTR (short com);

Function: Set the DTR handshake line. Can be used to control a modem!

Parameter: com 1=SER0, 2=SER1

Return: -/-

ComResDTR (short com);

Function: Reset the DTR handshake line. Can be used to control a modem! The
modem will disconnect if DTR is dropped.

Parameter: com 1=SER0, 2=SER1

Return: -/-

ComGetDCD (short com);

Function: Get the state of the DCD handshake line. Can be used to control a mo-
dem! DCD will be activ if the attached modem detects a carrier (= it is
online).

Parameter: com 1=SER0, 2=SER1

© 2008 mocom software GmbH & Co KG 283/399

VIII. MCAT Serial Driver mCAT 2.20

Return: TRUE if DCD is activ!

4. The SimpleIO Functions

SimpleIO is a streaming interface designed for debugging purposes. It is not very powerful

and not recommended to be used for application design purposes.

To use this functions, you have to include the header file simpelio.h.

Note: With mCAT 2.20, you can use the standard C printf, fprintf functions as well to send

debug data to the serial line. However, you MUST NOT INCLUDE the C stdio.h include file

to use them! Use simpelio.h only! Please note that floating point types (double and float) are

not supported. To output those, use sprintf to format a buffer and send the buffer to the seri-

al line using printf.

With the SIOxxxxxx functions you can address all UARTS in a system by means of argu-

ment channel. If channel is -1, the output is send to the default UART. The default UART is

the one used by SYSMON.

Function Comment
SIOWrLn(channel); Generates line break on port
SIOWrDecShort(channel,value,lead); Writes value as short decimal value at port. If

lead is true, leading zeros will be generated.
SIOWrDecLong(channel,value,lead); Writes value as long decimal value at port. If

lead is true, leading zeros will be generated.
SIOWrDecWord(channel,value,lead); Writes value as unsigned short decimal val-

ue at port. If lead is true, leading zeros will

be generated.
SIOWrDecLWord(channel,value,lead); Writes value as unsigned long decimal value

at port. If lead is true, leading zeros will be

generated.
SIOWrHexByte(chan,value) Writes value as a single byte hex value at

port.
SIOWrHexWord(chan,value) Writes value as short hex value at port.
SIOWrHexLWord(chan,value) Writes value as long hex value at port.
SIOWrStr(chan,string) Send string at port.
SIOWrChar(chan,chr) Send single char chr at port.

284/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 VIII. MCAT Serial Driver

Function Comment
SIORdChar(chan) Read one char from the port and return it.

The calling Task/Thread is blocked while

waiting.
SIOkbhit(chan) Test if a char is available. Returns TRUE if

so. Function does not block.

To prevent blocking, use SIOkbhit() to deter-

mine whether SIORdChar can be called with-

out block.
SIODumpHex(chan,addr,data) Writes the memory dump with a length of 16

Bytes like: Fictitious adress, Data(hex),

Data(hex), (16x)..., ASCII representation

(00800000 AA 55 89 00 80 00 D0 00 80 00

00 04 00 00 00 00 * .U..............)

to port.

4.1. SimpleIO Function directed to the default UART (SYSMON)

There is also a set of macro functions available that implicitly use -1 for the channel selector:

Function Comment
WrLn(); Generates line break at port
WrDecShort(value); Writes value as short decimal value at port.
WrDecLong(value); Writes value as long decimal value at port.
WrDecWord(value); Writes value as unsigned short decimal val-

ue at port.
WrDecLWord(value); Writes value as unsigned long decimal value

at port.
WrHexByte(value) Writes value as a single byte hex value at

port.
WrHexWord(value) Writes value as short hex value at port.
WrHexLWord(value) Writes value as long hex value at port.
WrStr(string) Send string at port.
WrChar(chr) Send single char chr at port.

© 2008 mocom software GmbH & Co KG 285/399

VIII. MCAT Serial Driver mCAT 2.20

Function Comment
RdChar() Read one char from the port and return it.

The calling Task/Thread is blocked while

waiting.
kbhit() Test if a char is available. Returns TRUE if

so. Function does not block.

To prevent blocking, use SIOkbhit() to deter-

mine whether SIORdChar can be called with-

out block.
DumpHex(addr,data) Writes the memory dump with a length of 16

Bytes like: Fictitious adress, Data(hex),

Data(hex), (16x)..., ASCII representation

(00800000 AA 55 89 00 80 00 D0 00 80 00

00 04 00 00 00 00 * .U..............)

to port.

4.2. Disabling SYSMON (mCAT2.20)

If you want to read a character from the default UART, you compete with SYSMON for the

next char. That will not work!

So if you need to disable SYSMON for some reasons, use the new system function Sysmo-
nEnable(FALSE) to disable SYSMON. However, you should not forget to re-enable SYS-

MON after all by calling SysmonEnable(TRUE).

SysmonEnable() returns a boolean value. If TRUE operation was successful, FALSE if not.

286/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IX. mCAT Date and Time Library

IX. mCAT Date and Time Library

1. Introduction

1.1. Data Types

All DateTime specific data types, structures and constants are defined in “datetime.h”. It

is located in the “cc\include” folder of your mCAT-distribution. Include “datetime.h” in

your C-source file if you plan to use the Date and Time Services of mCAT.

1.1.1. The MTIME Data Type

MTIME is the data type used by the MTime-Api. It always represents a number of seconds.

This can be the number of seconds since 1970-01-01 00:00:00, known as UNIX-time, or the

number of seconds since system startup.
typedef unsigned long MTIME; /* UnixTime,secs since 1970-01-01 00:00:00*/

1.1.2. The SYSTIME Structure

The SYSTIME data structure contains the broken down Gregorian date value. It is defined

as follows:
typedef struct {
 short millisecond; /* millisecs after the second -- [0, 999] */
 short second; /* seconds after the minute -- [0, 60] */
 short minute; /* minutes after the hour -- [0, 59] */
 short hour; /* hours since midnight -- [0, 23] */
 short day; /* day of the month -- [1, 31] */
 short month; /* months since January -- [0, 11] */
 short year; /* years since 1900 */
 short wday; /* days since Sunday -- [0, 6] */
} SYSTIME;

1.1.3. The TIMEZONE Structure

The TIMEZONE data structure is defined as follows:
typedef struct {
 char std_name[12]; /* name string, GMT, CET, WET,... */
 SW_TIME std_start; /* when to switch to standard time(in DST) */
 long std_offset; /* offset to UTC, local=UTC+std_offset(sec)*/
 char dst_name[12]; /* name string, BST, CEST, WEST,... */
 SW_TIME dst_start; /* when to switch to DST (in STD time) */
 long dst_offset; /* offset to std, dlt=local+dst_offset(sec)*/

long dst_active;
} TIMEZONE;

© 2008 mocom software GmbH & Co KG 287/399

IX. mCAT Date and Time Library mCAT 2.20

1.1.4. Daylight Saving Time Switching Times

typedef struct {
 short month; /* month (Jan is 0) */
 short day; /* 1...5 */
 short wday; /* weekday (Sun is 0)... */
 short hour; /* hour in local time (std or dst) */
} SW_TIME;

1.1.5. Predefined Daylight Saving Times

There are two predefined Daylight Saving Time settings which can be stored by enumeration

in EEPROM at the moment (They are compatible to the EEPROM usage of emBASIC for

timezones).
/* There are some predefined DST Rules. Use them with the EEPROM functions. */
#define IDST_NONE 0
#define IDST_EUROPE 1 /* European */
#define IDST_USA 2 /* USA */

The predefined European daylight saving time uses this settings:

Offset to standard time 3600sec
Start SW_TIME = {2,5,0,2} Start at last Sunday in March

at 02:00 local time.
Stop SW_TIME = {9,5,0,3} Stop at last Sunday in Octo-

ber at 03:00 local dst time.

The predefined USA daylight saving time uses this settings:

Offset to standard time 3600sec
Start SW_TIME = {3,1,0,2} Start at first Sunday in April

at 02:00 local time.
Stop SW_TIME = {9,5,0,2} Stop at last Sunday in Octo-

ber at 02:00 local dst time.

1.1.6. MSGID

Use this constant definitions to query the MsgIds of the schedule messages:
#define MSGNAME_SCHEDULEAT "mCAT/Schedule/At"
#define MSGNAME_SCHEDULEEVERY "mCAT/Schedule/Every"

288/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IX. mCAT Date and Time Library

1.1.7. Errors

Every function of the DateTime library returns information about its exit status. There are two

kinds of functions, those which return an error code, and those which return a value. The er-

ror codes are defined in “datetime.h” and printed below. If a function returns a value (usu-

ally that is a MTIME) a return value of (-1) indicates that an error occured. The defined error

values are:
#define DATETIME_ERR_OK 0 /* no error */
#define DATETIME_ERR_INTERNAL 1 /* library error */
#define DATETIME_ERR_PARAM 2 /* parameter is not correct */
#define DATETIME_ERR_CONV 3 /* error converting time */
#define DATETIME_ERR_RTC 4 /* error accessing RTC */
#define DATETIME_ERR_NOTIMPLEMENTED 5 /* this function is not implemented*/
#define DATETIME_ERR_SCHEDULELOST 11 /* the system wasn't able to send
 a schedule event at the correct
 time */

2. Mtime

2.1. Function Reference

MTimeSet

Function: Set the clock by an UNIX-style time value.

The second counter of the internal clock is set by the parameter value

mTime, the millisecond counter is set to zero. The system startup time is

set to the new time. mTime contains the new time in seconds since

1970-01-01 00:00:00. The time base is UTC.

The new time value is also stored in the RTC, if there is one.
C-Prototype: short MTimeSet(MTIME mTime);
Arguments: MTIME mTime New UTC time value in seconds since

1970-01-01 00:00:00 (“Unix-time”).
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_CONV
DATETIME_ERR_RTC

© 2008 mocom software GmbH & Co KG 289/399

IX. mCAT Date and Time Library mCAT 2.20

MTimeGet

Function: Get the clock value as UNIX-style time value.

Return the actual number of seconds since 1970-01-01 00:00:00. Time

base is UTC. The millisecond counter of the internal clock is ignored.

If there is no RTC and you never set the time before (by calling MTime-

Set() or SysTimeSet()), the number of seconds since system startup is

returned.
C-Prototype: MTime MTimeGet();
Arguments: None

Returns: MTime Actual UTC time value in seconds since

1970-01-01 00:00:00 or seconds since system

startup.
(-1) if an error occured

MTimeSinceStart

Function: Get the uptime.

Gets the time in seconds since the system started or since the last call to

MTimeSet() or SystemTimeSet().
C-Prototype: MTIME MTimeSinceStart();
Arguments: None

Returns: MTime Uptime in seconds.
(-1) if an error occured

290/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IX. mCAT Date and Time Library

MTime2SysTime

Function: Convert an UNIX-style time value to a broken down SYSTIME represen-

tation.

The SYSTIME.millisecond data item is not set by this function.
C-Prototype: short MTime2SysTime(SYSTIME *pSysTime,MTIME mTime);
Arguments: SYSTIME *pSysTime Pointer to SYSTIME structure, in which the con-

verted time value is stored.
MTIME mTime MTIME value which should be converted (sec-

onds since 1970-01-01 00:00:00).
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_PARAM
DATETIME_ERR_CONV

3. SysTime

4. Function Reference

SysTimeSet

Function: Set the clock by a SystemTime-style time value.

The second counter of the internal clock is set by the valueof pSysTime,

the millisecond counter is set to zero. The system startup time is set to

the new time. The time base is UTC.

The new time value is also stored in the RTC, if there is one.
C-Prototype: short SysTimeSet(SYSTIME *pSysTime);
Arguments: SYSTIME *pSysTime Pointer to a SYSTIME structure which contains

the new time.
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_PARAM
DATETIME_ERR_RTC

© 2008 mocom software GmbH & Co KG 291/399

IX. mCAT Date and Time Library mCAT 2.20

SysTimeGet

Function: Get the clock as SystemTime-style value.

The pSysTime structure is filled with the actual time.

If there is no RTC and the time was not already set by MtimeSet() or

SysTimeSet() the actual time is the time elapsed since system startup

plus 1970-01-01 00:00:00.
C-Prototype: short SysTimeGet(SYSTIME *pSysTime);
Arguments: SYSTIME *pSysTime Pointer to a SYSTIME structure in which the

time value is stored.
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_PARAM
DATETIME_ERR_CONV

SysTime2MTime

Function: Convert a time in SystemTime style to an UNIX-style time value.

The SYSTIME.millisecond data is not used by this function.
C-Prototype: MTIME SysTime2MTime(SYSTIME *pSysTime);
Arguments: SYSTIME *pSysTime Pointer to a SYSTIME structure, which contains

the time to convert.
Returns: MTIME Converted MTIME value (seconds since

1970-01-01 00:00:00).
(-1) if an error occured

292/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 IX. mCAT Date and Time Library

5. Timezone

5.1. Function Reference

TimezoneSet

Function: This function sets the current timezone information of the system. It does

not store it. It will be lost after a system reset.

Use this function if you want to set a timezone, which is NOT included in

the list of predefined timezones of DateTime. You have to call this func-

tion at every system startup.
C-Prototype: short TimezoneSet(TIMEZONE *pTz);
Arguments: TIMEZONE *pTz Pointer to a TIMEZONE structure, which con-

tains the timezone information.
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_PARAM

© 2008 mocom software GmbH & Co KG 293/399

mCAT 2.20

TimezoneGet

Function: Get the timezone information currently used by the system.

C-Prototype: TIMEZONE * TimezoneGet(TIMEZONE *pTz);
Arguments: TIMEZONE *pTz Pointer to a TIMEZONE structure, which con-

tains the timezone information.
Returns: TIMEZONE Pointer to TIMEZONE structure.

NULL if an error occured

294/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

TimezoneSetEE

Function: Set the timezone information of the system and write it to the EEPROM.

It will be loaded and set at next system startup. Use this function if you

want to set a timezone, which is included in the list of predefined time-

zones of DateTime.
C-Prototype: short TimezoneSetEE(unsigned idst,long offset);
Arguments: unsigned idst Index value of predefined daylight saving time

settings for the timezone (DST_NONE,

DST_EUROPE, DST_USA,...)
long offset Offset value in seconds of standard time to UTC

(local=UTC+std_offset)
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_PARAM

6. LocalTime

6.1. Function Reference

LocalTimeSet

Function: Set the system time, by using local time. Time base is local time, which

is determined by the timezone information.

This function modifies the RTC, if there is one.
C-Prototype: short LocalTimeSet(SYSTIME *ptime);
Arguments: SYSTIME *ptime Pointer to a system time structure which con-

tains the new local time.
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_PARAM
DATETIME_ERR_RTC

© 2008 mocom software GmbH & Co KG 295/399

mCAT 2.20

LocalTimeGet

Function: Get the localized system time.

Time base is local time, which is determined by the timezone informa-

tion from EEPROM or set by a previous call to TimezoneSet().
C-Prototype: short LocalTimeGet(SYSTIME *ptime);
Arguments: SYSTIME *ptime Pointer to a system time structure which will be

filled with the local time.
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_PARAM
DATETIME_ERR_CONV

296/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

7. Schedule

7.1. Function Reference

ScheduleAt

Function: Request a schedule msg at one specific time.

The DateTime service sends a scheduling msg to the requesting task,

when the time specified by the parameter “at” is reached. You can speci-

fy scheduling times with a precision of one second. The SYSTIME.mil-

lisecond value is ignored.
C-Prototype: short ScheduleAt(SCHEDULEMSG *msg,SYSTIME *at,short

self,short prio,short reply);
Arguments: SCHEDULEMSG

*msg

Pointer to a SCHEDULEMSG, which is sent to

the requester when the scheduling time is

reached.

You must never change any value of this data

structure.
SYSTIME *at Pointer to a SYSTIME structure which contains

the requested scheduling time.
short self The Id of the requesting task (as returned by

TaskStartup(), normally stored in variable Self).
short prio Priority of the message, which is used when it is

sent to the requesting task (1..255, 1 is low pri-

ority).
short reply Reply priority. This priority is used when the

message is replied by the requesting task

(1..255).
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_PARAM

© 2008 mocom software GmbH & Co KG 297/399

mCAT 2.20

ScheduleEvery

Function: Request a schedule msg at specific intervals.

The DateTime service sends a scheduling msg to the requesting task,

whenever a time interval specified by the parameter “every” is elapsed.

You can specify scheduling every second, minute, hour, day, week,

month and year. The SYSTIME.millisecond value is ignored.

You can stop scheduling by simply not sending a reply upon a schedul-

ing request.
C-Prototype: short ScheduleEvery(SCHEDULEMSG *msg,SYSTIME *every,short

self,short prio,short reply);
Arguments: SCHEDULEMSG

*msg

Pointer to a TSCHEDULEMSG, which is sent to

the requester when the scheduling time is

reached.

You must never change any value of this data

structure.
SYSTIME *every Pointer to a TSYSTEMTIME structure which

contains the requested scheduling time. Fill val-

ues you do not need with (-1). For example, if

you want to request a scheduling event every

second fill all items of this structure with (-1). If

you want to schedule every minute, set the sec-

onds when you want it to get scheduled and fill

all other values with (-1).
short self The Id of the requesting task (as returned by

TaskStartup(), normally stored in variable Self).
short prio Priority of the message, which is used when it is

sent to the requesting task (1..255, 1 is low pri-

ority).
short reply Reply priority. This priority is used when the

message is replied by the requesting task

(1..255).
Returns: Error code DATETIME_ERR_OK

DATETIME_ERR_INTERNAL
DATETIME_ERR_PARAM

298/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20

ScheduleEvery

DATETIME_ERR_CONV

© 2008 mocom software GmbH & Co KG 299/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

X. BgMem: Nonvolatile Data Storage for mCAT

1. Introduction

BgMem allows the storage of data in battery backed up RAM, this implies that it will only run

on hardware with battery. The functions are similar to a file system, there are, however,

some restrictions to optimize the behaviour for real time systems:

– No dynamic file size

– No variable record sizes

On the other hand provides BgMem possibilities a normal file system lacks:

– Stack (LIFO - Last in First out)

– FIFO (First in First out)

– Ring Buffer

– Random access

BgMem stores time and date of the file generation and of all changes to the file (requires

hardware with RTC)

2. Fundamentals

2.1. Organization

A BgMem memory can have a maximum of 16 files.

A file can have 1..65535 records

Size and number of records are fixed while the file is created.

File size is limited to the amount of memory set aside for BgMem.

2.2. File Names

File names can be 32 characters long and are distinguished between lower and upper case.

(Lower case file names cannot be manipulated by SYSMON)

Admissable characters are “$_-.” , “A”..“Z”, “a”..“z”, “0"..”9"

Not acceptable are “mybgmem/data”, “äste/dat”

300/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 X. BgMem: Nonvolatile Data Storage for

mCAT
2.3. Treatment of BgMem at System Start

At system start BgMem checks whether a BgMem memory has been defined. If it finds files,

they are checked for consistency. One defective record is not regarded a fatal error - it

would just be deleted.

If a directory or a file is defective, it will be removed. If all files are defective, BgMem as-

sumes the file systems has been destroyed or it has not yet been initialised and formats it

new to avoid more error messages.

2.4. Memory Management

The memory for the BgMem area can be found just below SYSTEM.HEAP and above user

memory. Its size is controlled by the value in EEPROM word 15, giving the size in kBytes.

BgMem stores all nonvolatile data there: files, directory and some management info.

If this area is accessed without using the BgMem functions, records will be lost, perhaps also

whole files.

The highest available free memory address is returned by the “mem” command of SYSMON.

There, the address given at “NVRAM START ADDR” is the lowest memory used by BgMem.

User programs and data must stay below this address.

2.5. File types

2.5.1. File Pointers

Write- and read access happens by using hidden (separate) write and read pointers .

For FIFO, LIFO and RING files there’s only one set of pointers, for RANDOM files there is

one set of pointers for each reference to the RANDOM file so every user has its own pointer

set. They are set to ‘0' when opening the file.

2.5.2. FIFO Files

FIFO files increment the write pointer with every write access. At file end it is reset to 0. If the

write pointer overtakes the - otherwise independent - read pointer, no more data will be writ-

ten, the write pointer gets not incremented and the function returns the “BGM_ERR_EOF”

error. The file is full.

© 2008 mocom software GmbH & Co KG 301/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

When reading from the file, the read pointer gets incremented and is also reset to 0 at the

end of the file. If the read pointer overtakes the write pointer, no more data are read and the

read function returns the “BGM_ERR_EOF” error.

For technical reasons, only n-1 of n records can be used.

2.5.3. LIFO Files

The last-in-first-out structure increments the write pointer with every write. At file end no

more data will be written, the write pointer will not be incremented and the function returns

the “BGM_ERR_EOF” error. The file is full.

When reading from the file, the write pointer will be also used as read pointer. If it gets 0, the

function returns the “BGM_ERR_EOF” error. The file is empty. If the file is not empty, the

write pointer gets decremented and the record is read.

2.5.4. Ring Buffers

Ring buffers are useful to store continuous data where access to just the latest records is

necessary at a time. The reading task or thread should have a higher priority than the writing

one to make sure data can be read faster than written, to prevent obstipation.

Basically a ring buffer is a FIFO with a different handling of the file full situation: If the write

pointer would overtake the read pointer, the file isn’t signalled to be full but instead the read

pointer is incremented synchronously with the write pointer and the oldest record gets lost.

2.5.5. Random Access Files

Files with random access allow the greatest flexibility in accessing records. Contrary to clas-

sical file systems (Windows/Unix) BgMem can access records post the current file end if

they are within the maximum number of records specified. If an unused (unwritten) record is

read, a length of 0 is returned - it is interpreted as empty record.

The 3 functions BGMWriteRandom, BGMReadRandom and BGMClear are used only with

random files. BGMWriteRandom and BGMClear set the current write pointer, BGMRead-

Random the read pointer independently of each other.

While opening or creating a random file, write and read pointers are set to 0. For each open

file view (BGMOpen/BGMCreate) a separate set of pointers is managed, this being the main

difference to the other structures.

302/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 X. BgMem: Nonvolatile Data Storage for

mCAT
After the read pointer is set with one of the above functions, both read and write pointer point

to the following record. Thus, BGMRead and BGMWrite or BGMVPrint can be used to se-

quentially read or write from the random starting point.

Example (without error checking):
BGMWriteRandom(hdl,“no1“,4,3);
BGMWrite(hdl,“no2“,4);
BGMReadRandom(hdl,buffer,4,4); // buffer contains „no2“
BGMReadRandom(hdl,buffer,4,3); // buffer contains „no1“

3. Setup of a BgMem file

BgMem files are set up with the SYSMON “format” command. See “BgMem extensions in

SYSMON”.

3.1. Special Operating Considerations

3.1.1. Changing Heap and BgMem Sizes

Modifying the size of the SYSTEM HEAP by setting EEPROM word 10 and/or modifying the

BgMem size by the "format" command of the Sysmon results in total data loss of the Bg-

Mem memory. You should not unnecessarily change those values.

3.1.2. Creating and Deleting Files

Deleting files requires numerous restructuring operations of the memory, possibly with mov-

ing entire files. The same applies to calling the BGMCreate with a modified record size or

number. Make sure the system is in low load conditions and supply voltage is safe at the

time you start these transactions.

3.1.3. Data Loss From Programming Errors

The memory area for BgMem is not protected by hardware - it can be accessed from all user

programs. Hence, programming errors like pointer errors can easily destroy data within Bg-

Mem. The CRC checking employed by BgMem can only detect that such errors have oc-

cured - not prevent them.

© 2008 mocom software GmbH & Co KG 303/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

4. Function Reference

int BGMWrite (BGMHDL bgm, void *data, word len);

Function: Writes a record to the file that is referenced by BGMHDL. The length of

the record is limited by the value specified during file creation. The real

length "len" will also be stored into the record.

This function is suitable for all types of files. The record is inserted at the

current write pointer position. Write pointer movement depends on the

file type.
Arguments: bgm "Handle", value returned in BGMOpen/BGMCreate

data Pointer to data to be stored
len Real length of data to be written

Returns: Number of bytes written or error code. If the value is small-

er than 0, it is an error code.
Supported on: mCAT 2.10 and higher

Hardware All with battery backup

Remarks: See 2.5 file types for the different management of LIFO, FIFO, Ring

buffer and Random file

304/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 X. BgMem: Nonvolatile Data Storage for

mCAT

int BGMRead (BGMHDL bgm, void *data, word len);

Function: Reads a record from the file that is referenced by BGMHDL. The length

of the record is limited by the value specified during file creation. The

user is responsible for *data to point to a memory block of sufficient size.

This function is suitable for all types of files. The record is copied from

the current read pointer position. Read pointer movement depends on

the file type
Arguments: bgm "Handle", value of the file returned in BGMOpen/BGMCre-

ate
data Pointer to data to be stored
len Real length of buffer for data to be read.

Returns: Number of bytes read or error code. If the value is smaller

than 0, it is an error code
Supported on: mCAT 2.10 and higher

Hardware All with battery backup

Remarks: See 2.5 file types for the different management of LIFO, FIFO, Ring

buffer and Random file

© 2008 mocom software GmbH & Co KG 305/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

long BGMVPrint (BGMHDL bgm, const char *fmt, void *data);

Function: Converts and formats a list of data and stores it into a record. The length

of the string is checked to be smaller than the file definition value. For-

mat information follows the C function "vprintf". A terminating 0 is always

inserted, hence the strings are valid C strings.

This function is suitable for all types of files. The record is inserted at the

current write pointer position. Write pointer movement depends on the

file type.
Arguments: bgm "Handle", value returned in BGMOpen/BGMCreate

fmt Format string
data Pointer to list of arguments to be stored

Returns: 0 if ok, >0 is number of excess characters.

Supported on: mCAT 2.10 and higher
Hardware All with battery backup

Remarks: A sample for the use of this function can be inspected in the implementa-

tion of BGMPrint(...) in \xampl1\gen.c

306/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 X. BgMem: Nonvolatile Data Storage for

mCAT

long BGMWriteRandom (BGMHDL bgm, void *data, word len, long pos);

Function: Writes a record to the file that is referenced by BGMHDL. The length of

the record is limited by the value specified during file creation. The real

length "len" will also be stored into the record.

This function is suitable for random files only. The record is inserted at

the position given in pos. Write pointer increments after storage.
Arguments: bgm "Handle", value returned in BGMOpen/BGMCreate

data Pointer to data to be stored
len Real length of data to be written
pos Position of record in file. If negative, position is calculated

from the end of the file. If the specified record is not avail-

able (pos outside file start or file end), the first or last

record will be written to.
Returns: Number of bytes written or error code. If the value is small-

er than 0, it is an error code.
Supported on: mCAT 2.10 and higher

Hardware All with battery backup

Remarks: Using this function on a FIFO, LIFO or Ring file results in the

BGM_ERR_ILLEGAL_ACCESS error.

© 2008 mocom software GmbH & Co KG 307/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

long BGMReadRandom (BGMHDL bgm, void *data, word len, long pos);

Function: Reads a record from the file that is referenced by BGMHDL. The length

of the record is limited by the value specified during file creation. The

user is responsible for *data to point to a memory block of sufficient size.

This function is suitable for random files only. The record is copied from

the position given in pos. Read pointer increments after storage.
Arguments: bgm "Handle", value returned in BGMOpen/BGMCreate

data: Pointer to data to be stored
len: Real length of buffer for data to be read.
pos: Position of record in file. If negative, position is calculated

from the end of the file. If the specified record is not avail-

able (pos outside file start or file end), the first or last

record will be read.
Returns: Number of bytes read or error code. If the value is smaller

than 0, it is an error code.
Supported on: mCAT 2.10 and higher

Hardware All with battery backup

Remarks: Using this function on a FIFO, LIFO or Ring file results in the

BGM_ERR_ILLEGAL_ACCESS error.

308/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 X. BgMem: Nonvolatile Data Storage for

mCAT

void BGMClear (BGMHDL bgm, long pos);

Function: Clears the record at the position specified - the length of data will be set

to 0

This function is suitable for random files only. The record is cleared at

the position given in pos. Write pointer increments after storage.
Arguments: bgm: "Handle", value returned in BGMOpen/BGMCreate

pos: Position of record in file. If negative, position is calculated

from the end of the file. If the specified record is not avail-

able (pos outside file start or file end), the first or last

record will be written to.
Returns: Number of bytes written or error code. If the value is small-

er than 0, it is an error code.
Supported on: mCAT 2.10 and higher

Hardware All with battery backup

Remarks: Using this function on a FIFO, LIFO or Ring file results in the

BGM_ERR_ILLEGAL_ACCESS error.

long BGMGetPos (BGMHDL bgm, int read);

Function:
Arguments: bgm: "Handle", value returned in BGMOpen/BGMCreate

Returns:
Supported on: mCAT 2.10 and higher

Hardware All with battery backup

Remarks:

long BGMSetPos (BGMHDL bgm, int read, long value);

Function:
Arguments: bgm: "Handle", value returned in BGMOpen/BGMCreate

Returns:
Supported on: mCAT 2.10 and higher

© 2008 mocom software GmbH & Co KG 309/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

long BGMSetPos (BGMHDL bgm, int read, long value);

Hardware All with battery backup

Remarks:

310/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 X. BgMem: Nonvolatile Data Storage for

mCAT

long BGMLockRecord (BGMHDL bgm, long first, word records);

Function: Inhibits write access of other tasks to records of a random file. Use of

this function on FIFO, LIFO or ring files is ignored.
Arguments: bgm: "Handle", value returned in BGMOpen/BGMCreate

first: Number of first record to lock
records: Number of records to be locked. All records can be locked,

even those not yet used.
Returns: TRUE: Lock successful, FALSE Record(s) could not be

locked
Supported on: mCAT 2.10 and higher

Hardware All with battery backup

Remarks: Only one lock per thread is possible. Locks are cancelled also by BGM-

Close

void BGMUnLockRecord (BGMHDL bgm);

Function: Cancelles a lock previously installed.

Arguments: bgm "Handle", value returned in BGMOpen/BGMCreate

Returns: mCAT 2.10 and higher

Supported on: Hardware All with battery backup

Remarks:

long BGMSetAttrib (BGMHDL bgm, word attr);

Function: Setup of file attributes. Currently, only "READ-ONLY" is implemented.

Arguments: bgm: "Handle", value returned in BGMOpen/BGMCreate
attr: 0 or BGM_ATTR_RDONLY

Returns: Error code, BGM_ERR_OK when successful

Supported on: mCAT 2.10 and higher
Hardware All with battery backup

Remarks:

© 2008 mocom software GmbH & Co KG 311/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

long BGMGetAttrib (BGMHDL bgm, BGMATTRIBUTE *attrib)

Function: Read all file attributes

Arguments: bgm: "Handle", value returned in BGMOpen/BGMCreate
attr: Pointer to a data structure of type "BGMATTRIBUTE" (see

below)
Returns: Error code, BGM_ERR_OK when successful

Supported on: mCAT 2.10 and higher
Hardware All with battery backup

Remarks: typede f st r u c t {
lword created; // time created
lword modified; // time last modified
word records; // number of records available
word size; // size of record in bytes
byte attr; // file attributes
byte mode; // file mode
char name[BGM_NAME_LEN+1]; // name
char padding; // internal use only

} BGMATTRIBUTE;

BGMHDL BGMReadDir (word seq, char buffer);

Function: Serves to inspect all available files

Arguments: seq: A sequential number
buffer: Pointer to a character array (string), minimum length

BGM_NAME_LEN +1
Returns: BGM_ERR_OK

File exists, file name is written to “buffer”
BGM_ERR_FILE_CORRUPTED

File contains one or more defective records
BGM_ERR_DIR_CORRUPTED

File exists but cannot be accessed. Gets
deleted on next restart

BGM_ERR_FILE_NOTUSED
File exists but is not used

BGM_ERR_EOF
Current value of “seq” is higher than highest
entry in file table

Supported on: mCAT 2.10 and higher
Hardware All with battery backup

312/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 X. BgMem: Nonvolatile Data Storage for

mCAT

BGMHDL BGMReadDir (word seq, char buffer);

Remarks: Example:

int i = 0;
char buffer[BGM_NAME_LEN+1];
do {

error = BGMReadDir(i++,buffer);
if (error == BGM_ERR_OK) {

WrStr(buffer);
WrLn();

} /* endif */
} while (error != BGM_ERR_EOF);

BGMHDL BGMCreate (char *name, word records, word size, int mode);

Function: Creates a file. If a file of the same name exists, it gets cleared and all

data is lost.
Arguments: name: File name, max. 32 characters. “$_-.” , “A”..“Z”, “0"..”9"

records: Number of records in the file: 0 < records < 65536
size: Size of records in bytes: 0 < records < 65536
mode: Bit array consisting of one of the file types:

BGM_MODE_FIFO: File has FIFO structure
BGM_MODE_LIFO: File has LIFO structure
BGM_MODE_RING: File has ring structure
BGM_MODE_RANDOM: File has random access

optionally logically ORed with
BGM_MODE_FIT: Ignore ”records” argument and
use all remaining BgMem-memory for

this file
For example: BGM_MODE_FIFO | BGM_MODE_FIT

Returns: BGMHDL reference to the file or error code. A valid

BGMHDL is always > 0
Supported
on:

mCAT 2.10 and higher

Hardware All with battery backup

Remarks: A create on an existing file clears that file if records or size are different

to the existing file. Otherwise the file will just be initialized and set to a

new file type

Also please see remarks to BGMRemove

© 2008 mocom software GmbH & Co KG 313/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

long BGMRemove (char *name);

Function: Clears a file

Arguments: name Name of the file to clear
BGM_ERR_OK or error code

Returns: mCAT 2.10 and higher

Supported on: Hardware All with battery backup

Remarks: Clearing a file is a critical transaction and should be executed with
caution. See chapter

BGMHDL BGMOpen (char *name, int wr);

Function: Open a file, get a reference (a handle) on it

Arguments: name Name of the file
wr TRUE means open for read and write

Returns: BGMHDL or error code. A valid BGMHDL is always > 0

Supported on: mCAT 2.10 and higher
Hardware All with battery backup

Remarks:

void BGMClose (BGMHDL bgm);

Function: Close a file, return the reference to it

Arguments: bgm "Handle", value returned in BGMOpen/BGMCreate
-

Returns: mCAT 2.10 and higher

Supported on: Hardware All with battery backup

Remarks:

lword BGMInit (lword size, int fmt);

Function: Create or initialize a file. This function is used by the SYSMON function

“format”
Arguments: size: Size of the BgMem memory

314/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 X. BgMem: Nonvolatile Data Storage for

mCAT

lword BGMInit (lword size, int fmt);

fmt: BGM_CMD_GETSIZE Just find out the size of BgMem and
return
BGM_CMD_SETSIZE Change the size of BGMEM by writing
size (in kBytes) to EEPROM word 15. Thereafter a RE-
SET is executed automatically!
BGM_CMD_FORMAT Format BgMEM. This should be done al-
ways after changing the size of BgMem.

Returns: Size of BgMem or 0 if no BgMem available

Supported on: mCAT 2.10 and higher
Hardware All with battery backup

Remarks:

© 2008 mocom software GmbH & Co KG 315/399

X. BgMem: Nonvolatile Data Storage for mCAT mCAT 2.20

5. Error Codes

Fehlercode Wert Beschreibung
BGM_ERR_OK 0 No error >= 0
BGM_ERR_EOF -1 EOF
BGM_ERR_NOT_OPEN -2 File not open, BGMHDL not valid
BGM_ERR_FILE_NOTUSED -3 File does not exists but could be created. Possi-

ble return value in BGMReadDir
BGM_ERR_FILE_CORRUPTED -4 File contains invalid record(s)
BGM_ERR_NOT_INSTALLED -5 BgMem server not installed, not started
BGM_ERR_DIR_CORRUPTED -6 File is corrupted, will be deleted with next RE-

SET
BGM_ERR_RECORD_COR-

RUPTED

-7 Current record is corrupted

BGM_ERR_RDONLY -8 File is write protected
BGM_ERR_LOCKED -9 Current record locked for write access
BGM_ERR_FILE_NOT_FOUND -10 File does not exist (BGMOpen)
BGM_ERR_ILLEGAL_ACCESS -11 File access not possible (possibly attempt to ac-

cess FIFO, LIFO or ring buffer with functions for

random file)
BGM_ERR_RECORD_EMPTY -12 currently not used
BGM_ERR_OUT_OF_MEMORY -13 BGMCreate: File could not be installed due to

low memory
BGM_ERR_ILLEGAL_POS -14 The requested file position is not valid
BGM_ERR_INVALID_FILE_NAME

-15

The file name passed with BGMCreate was not

valid.

316/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XI. mCAT Random Access Memory Man-

agement
XI. mCAT Random Access Memory Management

1. Introducing mCAT V2 Memory Management

MCAT V2.00 introduced a memory management for both system memory and buffer pool

management. This document will introduce the concepts and can be usd as a function refer-

ence.

1.1. System Memory Heap Management

The system heap is a chunk of memory at top of physical ram memory. Its size in kBytes

can be set by changing EEPROM word 10 (0ah). If EEPROM word (10) is invalid, a default

heap size is used. The size of the default heap is set at compile time and depends on the

hardware resources available. The system heap is used for:

• System data structures including THREAD and TASK descriptors

• Stacks for both threads and interrupt drivers

• Message pools (for example the BITBUS pool)

The memory system is open to introduce additional heaps. The current release of mCAT

does not support them. Memory once allocated will not be freed again (with the current im-

plementation).

The system heap is heap »0«.

1.2. Message Buffer Pool Management

A special problem within a communication orientated system like mCAT is managing buffers.

A buffer is a dynamically allocated chunk of memory of a given, fixed length. For a specific

task or interrupt driver a fixed number of buffers are made available.

The message pool API implements a buffer management that suits these demands and it is

optimized for fast operation, so it can be used everywhere in the system, even within inter-

rupt drivers (BITBUS driver for example).

Because a buffer or message pool has a fixed number of buffers with a fixed length, frag-

mentation will not occur.

© 2008 mocom software GmbH & Co KG 317/399

XI. mCAT Random Access Memory Management mCAT 2.20

Please note that the Message Buffer Pool Management was extended with

mCAT2.10-T215. See the new functions MsgPoolCreateEx(), MsgPoolGetInfo()

and MsgPoolAddNotifyHdl()

1.3. Memory Address and Pointer Calculation

Within the memory space of a CPU there is a RAM window defined. This is the space where

physical RAM will be installed. A frequently used RAM window starts at 400000h and is

400000h long (4MB).

It is specified that physical RAM should be mirrored within this window. A 128k ram will be

mirrored 32 times for example.

That feature (it really is not a bug) is used to make mCAT run with all ram sizes from 128k

up to 4MB without recompilation. The RAM size is calculated at startup time. However, be-

cause the mCAT system heap and the mCAT internal variables are located on top of the

physical ram window, the addresses will not be related to the real physical location.

Using the functions of the memory API, it is simple to recalculate the pointers for debugging

and system information purposes. Under normal operation, this calculation is never neces-

sary. If however necessary, please follow this sample code:

lword GetTopOfMemory()
{

lword sizeb, top;

 // get size of RAM in byte
 sizeb = 1024 * (lword) MemGetRamSize(0);
 // get NVRAM area pointer. Is not null if BGMEM is installed
 top = (lword) MemGetNVRamInfo();
 if (top == NULL) {
 // if no BGMEM, get lowest HEAP address
 top = (lword) MemAlloc(0,0,0)
 } /* endif */
 // norm. User should never use ram >= top
 top = (top % sizeb) + 0x400000;

return top;
}

318/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XI. mCAT Random Access Memory Man-

agement

Please note that with mCAT 2.10-T215 and higher there is no need for a recalcu-

lation, because the heap addresses are automatically mapped to the real physical

address space.

2. Datatypes

With the latest changes (port to the ARM7 platform) we had to change a few datatypes. For

example, the argument heap of MemAlloc() was defined as word previously. Now it has the

portable type HEAPHDL. Because HEAPHDL is defined as a word on the Toshiba platform,

this is still compatible in both cases, physical calling convention and compile time type

checking. The introducing of the new types make it easier to support cross platform compat-

ibility.

3. The Memory Management API

MemAlloc

Function: Allocates a chunk of memory from the given heap. If the requested

memory size can not be allocated, a NULL pointer is returned.
C-Prototype: void * MemAlloc (HEAPHDL heap, UINT32 size, INTEGER clear);

Arguments: heap Selects a heap. Currently only the system heap (heap=0) is

supported.
size Length of the memory chunk. If the length does not obey to

the systems alignment rules, the length is increased to

meet them.
clear If TRUE, the memory will be cleared (filled with 0) before

return.
Returns: Aligned pointer to a chunk of memory or NULL if fail!

Supported: mCAT All versions.
Hardware All

Comments:
If you call MemAlloc to allocate memory from the system

heap (heap=0) with a size equal to 0, the function will re-

turn the lowest address used by the system!

© 2008 mocom software GmbH & Co KG 319/399

XI. mCAT Random Access Memory Management mCAT 2.20

MemFree

Function: Frees a chunk of memory previously allocated by MemAlloc - if the heap

supports freeing of memory! The mCAT SYSTEM HEAP (0) of mCAT

does not support this function. However, future versions may support it

and it is always a good practice to use MemFree!
C-Prototype: void MemFree (HEAPHDL heap, void *mem);

Arguments: heap Selects a heap. Currently only the system heap (heap=0) is

supported.
mem Pointer to the memory chunk to be freed

Returns: -/-

Supported: mCAT All versions.
Hardware All

Comments:
MemGetFree

Function: Retrieve the size of the memory available within this heap

C-Prototype: UINT32 MemGetFree (HEAPHDL heap);

Arguments: heap Selects a heap. Currently only the system heap (heap=0) is

supported.
Returns: Memory available within this heap

Supported: mCAT All versions.
Hardware All

Comments:

MemGetRamSize

Function: Returns the physical size of the RAM in use. The returned value is in

kBytes, so with an 128k RAM MemGetRamSize will return 128.
C-Prototype: UINT32 MemGetRamSize (word reserved);

Arguments: reserved This argument is reserved for future extension.

Returns: Size of physical RAM in kBytes

Supported: mCAT All versions.
Hardware All

Comments:

320/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XI. mCAT Random Access Memory Man-

agement
4. The Buffer Pool Manager API

MsgPoolCreate

Function: Create a message pool. The chunk of memory passed by use of param-

eter »mem« must be big enough to contain all buffers (len*buffers) plus

some management data. Please do not try to calculate this size manual-

ly. Use the function MsgPoolCalcSize instead.
C-Prototype: POOLHDL MsgPoolCreate (void *mem, UINT32 len, UNSIGNED

buffers);
Arguments: mem A pointer to a chunk of memory big enough to hold all

buffers.
len The length of chunk "mem"
buffers Number of buffers “mem” shall be divided into.

Returns: A pool handle or 0 on fail! A pool handle is the bit-inverted

ordinal number of the pool. This information may be of in-

terest when using MsgPoolGetInfo. See below.
Supported: mCAT All versions.

Hardware All

Comments: A typical sequence looks like this:

UINT32 size;
void *mem;
word my_pool

// 20 buffers, 100 bytes each
size = MsgPoolCalcSize (100,20);
// get memory from heap
mem = MemAlloc(0,size,1);
if (mem) {

// create!
my_pool = MsgPoolCreate (mem,size,20);

} else {
// FAIL ... // handle error

} /* endif */

© 2008 mocom software GmbH & Co KG 321/399

XI. mCAT Random Access Memory Management mCAT 2.20

MsgPoolCalcSize

Function: Calculate the size needed to create a pool of buffers of useable length

len. See MsgPoolCreate for details.
C-Prototype: UINT32 MsgPoolCalcSize (UNSIGNED len, UNSIGNED buffers);

Arguments: len The usable length of a buffer
buffers Number of buffers desired

Returns: Size of pool in bytes including management data.

Supported: mCAT All versions.
Hardware All

Comments:

MsgPoolAlloc

Function: Allocate a buffer from pool. The buffer is of the given size for that pool

(see MsgPoolCreate). An application must not write behind the end of

the buffer - this will cause unpredictable errors.

The buffer is not cleared (set to »0«) and it contains random data.
C-Prototype: byte *MsgPoolAlloc (POOLHDL pool)

Arguments: pool A valid pool handle

Returns: A buffer or NULL if either an error occurred or no more

buffers are available.
Supported: mCAT All versions.

Hardware All

Comments:

322/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XI. mCAT Random Access Memory Man-

agement

MsgPoolFree

Function: Free a buffer previously allocated by MsgPoolAlloc. You need not to

know the pool handle the buffer belongs to as this will be managed auto-

matically!
C-Prototype: void MsgPoolFree (byte *buffer);

Arguments: buffer Pointer to the buffer to be freed.

Returns: -/-

Supported: mCAT All versions.
Hardware All

Comments:
FREE CAN BE USED GLOBALLY! IF YOU HAVE THE AD-

DRESS OF A BUFFER, YOU CAN FREE IT WITHOUT

KNOWING WHAT POOL IT BELONGS TO.

MsgPoolAvailable

Function: Tells how many buffers are available in a given pool.

C-Prototype: INTEGER MsgPoolAvailable (POOLHDL pool);

Arguments: pool A valid pool handle

Returns: Number of free buffers in pool

Supported: mCAT All versions.
Hardware All

Comments:

© 2008 mocom software GmbH & Co KG 323/399

XI. mCAT Random Access Memory Management mCAT 2.20

MsgPoolAddNotifyHdl

Function: For every pool there can be ONE notify function. Whenever a buffer is

freed, MsgPoolFree will call a pool's notify function first (if available) to

signal that a buffer is freed. The function can be used for debugging pur-

poses as well as for elaborated buffer handling applications.

If notify returns TRUE, MsgPoolFree will abort its action and presume

that notify uses the buffer for some other purpose (so it will stay allocat-

ed!). The buffer can be freed using a call to MsgPoolFree later if needed.

Please note that while notify is called, all interrupts are disabled. Keep

notify as short and fast as possible!
C-Prototype: INTEGER MsgPoolAddNotifyHdl (POOLHDL pool, void *notify, void

*self);
Arguments: pool A valid pool handle

notify A pointer to a notify function, passed as a void pointer. The

prototype of Notify is:

INTEGER notify (void *self, void *buffer);
self A pointer to private data that is passed along with a call to

notify for the programmers convince.
Returns: TRUE if function succeed

Supported: mCAT All versions newer than build T00215.
Hardware All

Comments:

324/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XI. mCAT Random Access Memory Man-

agement

MsgPoolGetInfo

Function: Retrieve information about a given pool.

C-Prototype: INTEGER MsgPoolGetInfo (POOLHDL pool, POOLINFO *info);

Arguments: pool A valid pool handle
info A Pointer to a POOLINFO structure (see below)

Returns: If TRUE, there are more pools available (useful to scan all

pools, see example)
Supported: mCAT All versions newer than build T00215.

Hardware All

Comments: typedef struct {
 UINT32 start; // POOL start address
 UINT32 end; // POOL end address
 UNSIGNED b_size; // size of a buffer
 UNSIGNED b_count; // total number of buffers
 UNSIGNED b_free; // number of available buffers
 INTEGER owner; // owner (0 if pool is not used)
} POOLINFO;

Example – scan all pools in the system:
UNSIGNED scan = 0;
INTEGER more;
POOLINFO info;
do {

// invert scan to get a pool handle!
more = MsgPoolGetInfo(~scan,&info);
if (more && info.owner) {

// you got information from pool 'scan'
..

}
scan++;

} while (more);

© 2008 mocom software GmbH & Co KG 325/399

XI. mCAT Random Access Memory Management mCAT 2.20

MsgPoolCreateEx

Function: This function is very similar to MsgPoolCreate. The major difference is

the extra owner argument. The owner is the taskid or intid of the creator.

The id is stored in the pools information structure and can be retrieved

for debugging purposes (see SYSMON command pools). Because the

system cannot always automatically resolve the owner – especially not in

the boot phase when TaskInit is executed – we provide MsgPoolCre-

ateEx for this purpose.
C-Prototype: POOLHDL MsgPoolCreateEx (UINT8 *mem, UINT32 len, UNSIGNED

buffers, INTEGER owner);
Arguments: mem A pointer to a chunk of memory bug enough to hold all

buffers.
len The length of chunk "mem"
buffers Number of buffers “mem” shall be divided into.
owner The taskid or intid of the owner.

Returns: A pool handle or 0 on fail! A pool handle is the bit-inverted

ordinal number of the pool. This information may be of in-

terest when using MsgPoolGetInfo. See below.
Supported: mCAT All versions newer than build T00215.

Hardware All

Comments: Example (from the ethernet driver):
pool = MsgPoolCreateEx(poolmem,1500,MAXBUFFERS,INT_ETH_DMA_RX);
if (pool == 0) {

TraceWriteLog("\r\n ETH ERROR: CAN'T ALLOCATE POOL”);
return FALSE;

} /* endif */

326/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment
XII. mCAT Non-Volatile Memory Management

1. Introducing Non-Volatile Memory Management

The NVMEM shared library is a collection of API's designed to access non-volatile memory

like FLASH memory and serial EEPROM's. The lib is very fundamental for mCAT and there-

fore usually the first module outside the kernel that is initialized.

1.1. Serial EEPROM API

The API (see chapter 3 for details) covers functions to read and write 16-Bit words from and

to serial EEPROMS via an SPI or I2C bus.

On Systems with SPI-Bus, both 6 and 8 bit address mode SPI-EEPROMS are supported.

With mCAT2.10R00300 and later that support SPI-EEPROMS we support any address word

width (the width is probed at system start).

On Systems with I2C-Bus (all recent systems), both one and two address byte EEPROMS

are supported.

The size of the address is auto-detected at boottime.

1.2. FLASH Memory API

There is a FLASH-API that can be used to explore, erase and program FLASH memory. Its

functionality is enhanced with mCAT2.10-T00215. The new functions give access to the in-

ternal database of supported flash memories.

1.3. I2C API

Even if the I2C-driver does not logically fit into the NVMEM library it was placed here because

it is needed to access serial EEPROMS.

2. Accessing EEPROMS

2.1. EEPROM Address Scheme

MCAT supports the use of small serial EEPROMS to store configuration data (as network

address, network parameter or others). A serial EEPROM is assumed to be organized in 16-

Bit units. More than one EEPROM can be used in a system (up to 3 or 4, depending on the

system configuration). Parts of those EEPROMS are used to store constant values and a

© 2008 mocom software GmbH & Co KG 327/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

software scheme is provided to write protect these specific areas. This area is called the

ROM section. The ROM-Section is addressed using the highest bit in an EEPROM address

value. The biggest EEPROM size supported is 8196 BYTES (4096 Words!).

The 16-Bit logical address word is formed as follows:

ROM RES4 CHIP LINEAR ADDRESS
15 14 12,13 0..11

The size of the ROM area is 0x40 hex and it is available on every EEPROM in the system.

To address this area, the highest bit of the address must be set to 1.

Bits 12 and 13 are used to select a specific chip. On some systems, only 3 chips can be ad-

dressed because of a low level I2C addressing conflict (This happens when an RTC8564 re-

altime clock is used).

The per chip linear address can range from 0 to 0xFFF (4096 words).

LOGICAL AD-
DRESS

LINEAR AD-
DRESS

ROMBIT Access

ROM AREA 0x8000-0x803F 0x00..0x3F ROM READ ONLY

A 256 Byte EEP-
ROM

(I2C, C34CW02)

0x00..0x3F 0x00..0x3F EEPROM READ / WRITE

A 512 Byte EEP-
ROM

(SPI, M93C66)

0x00..0xDF 0x00..0xDF EEPROM READ / WRITE

A 8196 Byte EEP-
ROM

(I2C, M24C64)

0x00..0xFDF 0x00..0xFDF EEPROM READ / WRITE

Table 10: EEPROM memory logical addressing scheme

4 Must be zero!

328/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment
2.2. The EEPROM API

EEPROMRead

Function: Read one word (16-Bit) from a given EEPROM address.

C-Prototype: word EEPROMRead(word addr);

Arguments: addr The logical address of the word to be read from.

Returns: The value read.

Supported: mCAT All versions.
Hardware All

Comments: #include <nvmem.h> is required!

EEPROMWrite

Function: Write one word (16-Bit) to a specified address of the EEPROM.

C-Prototype: void EEPROMWrite (word addr, word value);

Arguments: addr The logical address of the word to be written.
value The value to be written

Returns:
Supported: mCAT All versions.

Hardware All

Comments: #include <nvmem.h> is required!

EEPROMGetSize

Function: Return the size of an EEPROM in units of 16-Bit words.

C-Prototype: UINT16 EEPROMGetSize (UINT16 chip);

Arguments: chip The EEPROM Chip to be selected.

Returns: Size of the read/write section in 16-Bit words

Supported: mCAT T00215 and higher
Hardware All

Comments: #include <nvmem.h> is required!

© 2008 mocom software GmbH & Co KG 329/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

2.3. The mCAT V2 EEPROM usage

The first 16 EEPROM words are reserved for mCAT. Each value (except some reserved

words) is listed below. Some parameters are spread over more than one EEPROM word as

denoted in parentheses (), the name in [square brackets] is the name of the address defini-

tion in EEPROM.H.

Please note that EEPROM.H offers two macros to access LSB or MSB values of a word. Ex-

ample:

node = GET_LSB(EEPROMRead(EE_BB_NODE_SPEED));

HARDWARE SERIAL NUMBER [EE_SER]

EEPROM words 0 + 1. It depends on the the manufacturer if a valid code is maintained or

not. Do not overwrite this value.

BITBUS PARAMETERS (1) [EE_BB_NODE_SPEED]

NODE, LSB:

Node address. 0 is invalid, 0xff selects master mode.

SPEED, MSB:

0 = 62.5 kBit/s

1 = 375 kBit/s

2 = 750 kBit/s

3 = 1500 kBit/s

BITBUS PARAMETERS (2) [EE_BB_BUF_LEN]

MSGLEN, MSB:

The minimum value is 20, the maximum is 255.

BUFFERS, LSB:

330/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment
The standard value is 8 for a slave and 32 for a master.

You may need more system memory for a master, see „EE_RAM“ for

Details.

SERx (1) [EE_Sx_SPEED] & SERx (2) [EE_Sx_BPC_PARITY]

See Serial driver documentation “driver.pdf” for details. The layout of these cells may be

subject to of change in future versions.

FLASH CLEANUP VECTOR [EE_FLASH_CLEAN_A, EE_FLASH_CLEAN_B]

See chapter 2 for more details.

SYSTEM HEAPSIZE [EE_RAM]

This word holds the size of the system heap in kBytes. The standard value for a BITBUS

master is „64 [dec]“ and „32 [dec]“ for a slave.

BIT900 FIFO DRIVER (1) [EE_FIFO_BUFFERS]

Number of buffers for the FIFO driver of the BIT900. These values may be used for other

purposes on different hardware.

BIT900 FIFO DRIVER (2) [EE_FIFO_LEN]

Length of a buffer for the FIFO driver of the BIT900. These values may be used for other

purposes on different hardware.

EE_LANGUAGE

This cell is used to code the used language. By default, this cell is not set.

© 2008 mocom software GmbH & Co KG 331/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

EE_COUNTRY

This cell is used to code the country. By default, this cell is not set.

EE_CHARSET

This cell is used to code the used charset. By default, this cell is not set.

EE_ETHERNET_MODE

This cell is used to set the ETHERNET interface to a fixed mode. Possible settings are:

AUTONEGOTIATION 1 (or 0xFFFF, default)

10-BASE-T FULL DUPLEX 2

10-BASE-T HALF DUPLEX 3 (default on NETA7)

100-BASE-TX FULL DUPLEX 4

100-BASE-TX HALF DUPLEX 5

EE_IP_DNS_0, EE_IP_DNS_1, EE_IP_0, EE_IP_1,

EE_IP_SUBMASK_0, EE_IP_SUBMASK_1, EE_IP_GATEWAY_0, EE_IP_GATEWAY_1,

EE_IP_ETH_MTU, EE_SOCKETS

These values are needed for the Internet setup.

EE_BASIC_START

From EE_BASIC_START to EE_USER_START is the reserved area for the ELZET80 em-

BASIC.

EE_USER_START

Define your own cells from EE_USER_START on:

#define MY_NEW_CELL EE_USER_START

#define MY_NEXT_CELL EE_USER_START+1

Please note that with a standard EEPROM only 16 cells are available to application use.

332/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment
3. Accessing Flash Memory

3.1. DELPAGE

Erasing a page in a flash memory:

– is a time consuming process

– usually disables the access to the rest of the flash memory.

Therefore we have to take a few precautions when we remove something from the flash:

– Make sure the code to erase the flash is moved to and executed in RAM!

– Make sure that there is no task or interrupt driver running out of the page to be erased.

System would crash!

– Make sure that the system integrity is not violated. Components vital for other compo-

nents maybe located in the page to be erased. System may react unforeseeable!

To provide this, mCAT uses an approach called DELPAGE. The idea is to mark pages (up to

16 pages are supported) using an easy to alter bitmap in the configuration EEPROM. When

a RESET or power up happens, the Non-Volatile Memory Management will delete all marked

pages, clear the bitmap and restart the system to provide a clean system.

To provide a reliable operation the DELPAGE bitmap is stored twice! The second copy is in-

verted and only if a bit is set in one bitmap AND reset in the other, the page is really erased.

The DELPAGE command of SYSMON is used to alter the EEPROM bitmap. It expects up to

16 ordinal page numbers.

For the page number / address relationship, please refer to the following table:

© 2008 mocom software GmbH & Co KG 333/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

DelPage # 29F040 29F800T 2*29F800T** 2*29F160*** 29F160
0.5MB 1MB 2MB 4MB 2MB

TSMCPU900
TSMCPU8H2

NET900H
NET900H+
PERDINX
BIT900A
BIT900PCI
BIT900104

TSMCPU32H2 TSMCPUARM NETA7

0 800000-80ffff 800000-80ffff 800000-81ffff 800000-83ffff 000000-01ffff
1 810000-81ffff 810000-81ffff 820000-83ffff 840000-87ffff 020000-03ffff
2 820000-82ffff 820000-82ffff 840000-85ffff 880000-8bffff 040000-05ffff
3 830000-83ffff 830000-83ffff 860000-87ffff 8c0000-8fffff 060000-07ffff
4 840000-84ffff* 840000-84ffff 880000-89ffff 900000-93ffff 080000-09ffff
5 850000-85ffff* 850000-85ffff 8a0000-8bffff 940000-97ffff 0a0000-0bffff
6 860000-86ffff* 860000-86ffff 8c0000-8dffff 980000-9bffff 0c0000-0dffff
7 - 870000-87ffff 8f0000-8effff 9c0000-9fffff 0f0000-0effff
8 - 880000-80ffff 900000-91ffff a00000-a3ffff 100000-11ffff
9 - 890000-81ffff 920000-93ffff a40000-a7ffff 120000-13ffff
10 - 8a0000-82ffff 940000-95ffff a80000-abffff 140000-15ffff
11 - 8b0000-83ffff 960000-97ffff ac0000-afffff 160000-17ffff
12 - 8c0000-84ffff* 980000-99ffff* b00000-b3ffff* 180000-19ffff*

13 - 8d0000-85ffff* 9a0000-9bffff* b40000-b7ffff* 1a0000-1bffff*

14 - 8e0000-86ffff* 9c0000-9dffff* b80000-bbffff* 1c0000-1dffff*

15 - 8f0000-8fbfff* 9e0000-9effff** bc0000-bfffff* 1e0000-1effff*

Table 11DELPAGE NUMBERS

* Pages reserved for mCAT

3.2. FLASH Memory API

334/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment

FLASHWrite

Function: Copies len bytes from a memory location src to a flash location dest. The

destination area must be empty (all 0xff).

The length must be a multiple of 4 and dest & src must be aligned
to a 4 byte boundary!

C-Prototype: INTEGER FLASHWrite (UINT32 *dest, UINT32 *src, UINT32 len);

Arguments: dest Pointer to the flash
src Pointer to the data
len Length of data to be written (in bytes!)

Returns: TRUE on success

Supported: mCAT All, Need to align src/dest since T00215 for better inter

platform compatibility.
Hardware All

Comments: #include <nvmem.h> is required

FLASHErase

Function: Erase a page from flash memory

C-Prototype: INTEGER FLASHErase (UINT32 *dest);

Arguments: dest Pointer into the flash

Returns: TRUE on success

Supported: mCAT All
Hardware All

Comments: #include <nvmem.h> is required

© 2008 mocom software GmbH & Co KG 335/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

FLASHGetTypeCode

Function: Retrieve the FLASH identification code.

C-Prototype: UINT32 FLASHGetTypeCode(UINT32 *flash);

Arguments: flash Pointer to the flash

Returns: The upper 16-bit return the number of flash memories used

in parallel to serve the systems bus size (example: 4

29F040 (single byte each) needed to feed a 32-Bit bus, 1

29F800 (two byte bus) needed to feed a 16-Bit system.

Among others this information is needed to calculate del-

page information.

The lower 16-Bit hold the manufacturer and the type code.
Supported: mCAT All

Hardware All

Comments: #include <nvmem.h> is required

FLASHGetName

Function: Convert the id code information retrieved using FLASHGetTypeCode into

a formatted ASCII string.
C-Prototype: char *FLASHGetName(UINT32 typecode);

Arguments: typecode Value returned by FLASHGetTypeCode.

Returns: Pointer to the ASCII representation of the flash type code

or NULL if the chip is not known.
Supported: mCAT New since T00215!

Hardware All

Comments: #include <nvmem.h> is required.

The system maintains a database of supported flash memories.

This function is used to query this database!

336/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment

FLASHGetNameByIndex

Function: Enumerate available flash memory devices.

C-Prototype: char *FLASHGetNameByIndex(UNSIGNED index);

Arguments: index A positive integer, an index to the flash memory database.

Returns: Pointer to the ASCII representation of the flash type code

or NULL if index does not select a valid database entry.
Supported: mCAT New since T00215!

Hardware All

Comments: #include <nvmem.h> is required.

The system maintains a database of supported flash memories.

This function is used to query this database!

FLASHGetSize

Function: Retrieve the size of a flash memory.

C-Prototype: UINT32 FLASHGetSize(UINT32 typecode);

Arguments: typecode Value returned by FLASHGetTypeCode.

Returns: Size of a flash memory in kByte or 0 if this flash memory

type is not known.

PLEASE NOTE THAT THE NUMBER OF CHIPS IS NOT
TAKEN INTO ACCOUNT! THIS FUNCTION RETURNS

THE RAW SIZE OF A FLASH MEMORY!
Supported: mCAT New since T00215!

Hardware All

Comments: #include <nvmem.h> is required.

The system maintains a database of supported flash memories.

This function is used to query this database!

© 2008 mocom software GmbH & Co KG 337/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

FLASHGetSizeByIndex

Function: Enumerate available flash memory devices.

C-Prototype: char *FLASHGetSizeByIndex(UNSIGNED index);

Arguments: index A positive integer, a index into the flash memory database.

Returns: Size of a flash memory in kByte or 0 if index does not se-

lect a valid database entry.
Supported: mCAT New since T00215!

Hardware All

Comments: #include <nvmem.h> is required.

The system maintains a database of supported flash memories.

This function is used to query this database!

Example:

void flash_info()
{

UINT32 id;
UINT32 size;
UNSIGNED index;
UNSIGNED chips;

id = FLASHGetTypeCode(0x800000); // assume flash at 0x800000
chips = id >> 16;
size = FLASHGetSize(id);
if (id && size) {

// a known flash
kprintf(“FLASH AT 0x800000 is a %s, chip size is %lu ”

 “system size is %lu [%u chips]\n”,
 FLASHGetName(id),
 size,
 size*chips,
 chips);

} else {
// well, lets look what we know ...
index=0;
do {

size = FLASHGetSizeByIndex(index);
if (size) {

// now we can be sure a description for this
// flash exists, so we can call FLASHGetNameByIndex()
// without further checking!
kprintf(“WE KNOW %s, its size is %lu\n”,

FLASHGetNameByIndex(index),
size);

index++;
} else {

338/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment
index = 0;

}
} while (index);

}

3.3. Supported Flash Memories [08/01/2008]

Please note that not all devices „supported“ are „tested“. MOCOM tries to test every chip in

the list and to add new types - however, it takes some time ...

Manufacturer Type code Supported Tested
AMD Am29F010 YES YES

Am29F040 YES YES

Am29F100 YES YES

Am29F200 YES -

Am29F400 YES -

Am29F800 YES YES

Am29F160 YES YES

Fujitsu MBM29F010 YES -

MBM29F040 YES -

MBM29F200 YES -

MBM29F400 YES -

MBM29F800 YES -

ST M29F040 YES YES

M29F100 YES -

M29F200 YES -

M29F400 YES -

© 2008 mocom software GmbH & Co KG 339/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

Manufacturer Type code Supported Tested
HYUNDAI HY29F040 YES -

HY29F200 YES -

HY29F400 YES -

HY29F800 YES -

HY29F160 YES YES

MACRONICS
MX29F800T MCAT2.1 YES

MX29F004 MCAT2.1 -

4. I2C-Driver

The I2C5-Driver shall enable users to easily access any I2C-Device in the system.

The I2C-Driver has not always been reentrant and its use was restricted to single

task use.

With T00215 the I2C-Driver is reentrant on all platforms now.

4.1. I2C Addressing

An I2C-Device 7-Bit address is formed as follows:

A3..A6 A0..A2 R/W

A3..A6 : Device type address, usually defined by the chip manufacturer.

The Pattern 1111 for A3..A6 is reserved and should not be used in 7-Bit

addressing mode.

A0..A2 : The Device address, usually selected using 3 Pins at the I2C-Device.

R/W : 1 = READ ACCESS, 0 = WRITE ACCESS

4.1.0.1. Extended addressing

5 I2C is a registered trademark of Philips Semiconductors

340/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment
1 1 1 1 0 A9 A8 R/W 8-Bit ADDRESS (A0..A7)

The 10-Bit addressing is not tested yet but implemented. Extended addressing uses the pre-

viously “reserved” pattern “1111xxxx” to transfer two address bits, BIT 9 (A9) and BIT 8 (A8)

of the 10-Bit Address. The lower order bits are transferred in an extra address extension

byte.

Extended (10-Bit) and normal (7-Bit) addressing are compatible and can be mixed in an I2C-

System.

4.2. I2C-Function Reference

I2CReceive

Function: Receive ilen bytes from the I2C-Device addressed by chip.

C-Prototype: INTEGER I2CReceive (UINT16 chip, UINT8 *in, UINT16 ilen);

Arguments: chip The I2C chip address. If the MSB of chip is zero, standard

7-bit addressing is used. If the MSB is not zero, the three

lowest bits of the MSB are used to extend the 7-Bit address

in the LSB. Please note that the 7-bit address must be giv-

en in I2C format including the read/write bit (bit 0). Howev-

er, you must not worry about the R/W bit – the driver sets it

up as needed.
in Pointer to the receive data buffer in RAM.
ilen The size of the receive buffer in bytes.

Returns: TRUE if read was successful

Supported: mCAT All
Hardware All

Comments: #include <nvmem.h> is required.

© 2008 mocom software GmbH & Co KG 341/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

I2CReceiveEx

Function: Send olen bytes and then receive ilen bytes from the I2C-Device ad-

dressed by chip. This is a combination of the functions I2CSendEx and

I2CReceive. This function executes both functions with tasking blocked

to ensure integral execution.
C-Prototype: INTEGER I2CReceiveEx (UINT16 chip, UINT8 *out, UINT16 olen, UINT8

*in, UINT16 ilen);
Arguments: chip The I2C chip address. If the MSB of chip is zero, standard

7-bit addressing is used. If the MSB is not zero, the three

lowest bits of the MSB are used to extend the 7-Bit address

in the LSB. Please note that the 7-bit address must be giv-

en in I2C format including the read/write bit (bit 0). Howev-

er, you must not worry about the R/W bit – the driver sets it

up as needed.
out Pointer to the send buffer
olen Number of bytes to be send from the send buffer
in Pointer to the receive data buffer in RAM.
ilen The size of the receive buffer in bytes.

Returns: TRUE if read was successful

Supported: mCAT All, new in T00215
Hardware All

Comments: #include <nvmem.h> is required.

342/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XII. mCAT Non-Volatile Memory Manage-

ment

I2CSend

Function: Send olen bytes to the I2C-Device addressed by chip.

C-Prototype: INTEGER I2CSend(UINT16 chip, UINT8 *out, UINT16 olen);

Arguments: chip The I2C chip address. If the MSB of chip is zero, standard

7-bit addressing is used. If the MSB is not zero, the three

lowest bits of the MSB are used to extend the 7-Bit address

in the LSB. Please note that the 7-bit address must be giv-

en in I2C format including the read/write bit (bit 0). Howev-

er, you must not worry about the R/W bit – the driver sets it

up as needed.
out Pointer to the send buffer
olen Number of bytes to be send from the send buffer

Returns: TRUE if send was successful

Supported: mCAT All
Hardware All

Comments: #include <nvmem.h> is required.

© 2008 mocom software GmbH & Co KG 343/399

XII. mCAT Non-Volatile Memory Management mCAT 2.20

I2CSendEx

Function: Send olen bytes to the I2C-Device addressed by chip but don't send ter-

minating I2C-STOP condition. This function is needed when data must

be send first to get a proper response. A I2CReceive call must follow a

call to I2CSendEx!
C-Prototype: INTEGER I2CSendEx(UINT16 chip, UINT8 *out, UINT16 olen);

Arguments: chip The I2C chip address. If the MSB of chip is zero, standard

7-bit addressing is used. If the MSB is not zero, the three

lowest bits of the MSB are used to extend the 7-Bit address

in the LSB. Please note that the 7-bit address must be giv-

en in I2C format including the read/write bit (bit 0). Howev-

er, you must not worry about the R/W bit – the driver sets it

up as needed.
out Pointer to the send buffer
olen Number of bytes to be send from the send buffer

Returns: TRUE if send was successful

Supported: mCAT All
Hardware All

Comments: #include <nvmem.h> is required.

344/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

XIII. mCAT Tools Documentation

1. The Basic Structure of mDE

There are several tools supplied with mDE. For the daily work at mCAT projects, there are

only two tools of importance: the special make utility vmake.exe and the Terminal program

wLGO.

At least vmake relies on a set of small helper routines and this documentation is about the

relation and the communication between these tools.

1.1. The Folder Structure

The mCAT folder tree looks like this:
<mcatpath>\BIN32 Executables for Windows 95/98/NT
<mcatpath>\ETC All configuration files (MCATINF.INI et.al.)
<mcatpath>\ETC\<core> One subdir for each CORE is provided
<mcatpath>\DOC Online doc as PDF files
<mcatpath>\CC C-source tree
<mcatpath>\CC\INCLUDE C-include files
<mcatpath>\CC\LIB\v4 C-librarys for TLCS900 C-Compiler 4.11
<mcatpath>\CC\LIB\V103 C-librarys for TLCS900 C-Compiler 1.03
<mcatpath>\CC\LIB\gnude C-librarys for GNU C-Compiler (GNUDE, ARM)
<mcatpath>\CC\LIB\hcarm C-librarys for Metaware C-Compiler (ARM)
<mcatpath>\CC\<examples> C-Example code

1.2. MCATINF.INI

The mCATINF.ini file contains many variables used by mDE to locate files, locate directories

and controlling mode. This file is an mCAT specific environment. All mocom tools refer to

this file and use the information from mcatinf.ini to locate files and to select specific modes.

A WINDOWS® registry entry is used to refer to mcatinf.ini. So it is possible to have serveral

different mcat installations and setups on one computer and to switch between the different

installations just by changing this registry entry.

The registry location used has been changed with mCAT 2.20 to better support users who

do not have the access rights to add or change entries in HKEY_LOCAL_MACHINE.

1.2.1. Registry Entry before mCAT2.20

HKEY_LOCAL_MACHINE/Software/mocom/mCAT/Path

© 2008 mocom software GmbH & Co KG 345/399

XIII. mCAT Tools Documentation mCAT 2.20

1.2.2. Registry Entry with mCAT2.20

HKEY_CURRENT_USER/Software/mocom/mCAT/Path

1.2.3. Section [MCAT] in mCATINF.INI

ALL VARIABLES IN THIS SECTION CAN BE USED WITHIN MAKEFILES BY

JUST USING THE VARIABLE NAME AS A MACRO NAME!

One example is the macro $(HARD), which is read from the MCATINF.INI file. However, all

variables can be overwritten by macro definitions within makefile (The re-definition of macros

inside a makefiles will have no effect on mcatinf.ini).

346/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

Variable Type Description
BIN PATH* The path to the mcat binaries.

CINCLUDE PATH The path of the mCAT C-include folder.

CLIB PATH The path of the mCAT C-runtime library folder.

AINCLUDE PATH The path of the mCAT ASM-include folder.

ALIB PATH The path of the mCAT ASM-runtime library folder (cur-

rently not used).

THOME PATH The path to the C-Compiler home

MAKEINI FILE** The name of the vMake default macro file (v4.ini for C

V4.1 / v103.ini for C V1.03)

TINCLUDE PATH The path of the Compilers C-include folder.

TLIB PATH The path of the Compilers C-runtime library folder.

HARD CONST*** Defines the „core“ used (CPU type, memory layout etc.)

CORE CONST Defines the „hardware“ used (external IO)

PFAM CONST Defines the processor family (TLCS900 or ARM7)

DO NOT CHANGE!!

VERSION CONST Defines the current major mcat version (“2.20”).

DO NOT CHANGE!!

std_ram QFILE**** The standard ram target (defines the base address for

programs) used for the examples. Can be redirected. See

„5.2.5. MKLNK“ for more information on TARGETS.

std_rom QFILE The standard rom target (defines the base address for

programs) used for the examples. Can be redirected. See

„5.2.5. MKLNK“ for more information on TARGETS.

linktmpl QFILE The currently used linker template file. See „3.2.2.

MKLNK“ for more information on linker templates

Table 12: mCATINF.INI Environment Variables
* A path only (without a file name)
** A file name only (without a path)
*** A constant definition (can be passed to C-Compiler as a macro)
**** A qualified file (path + file name)

© 2008 mocom software GmbH & Co KG 347/399

XIII. mCAT Tools Documentation mCAT 2.20

The file can be manipulated by use of a std. ASCII-editor, the SETVAR command (3.5.1.) or

by your own programs using the Windows functions „WritePrivateProfileString“ and „GetPri-

vateProfileString“.

1.2.4. Path macro replacement

It is allowed and recommended to use path macros within mcatinf.ini. Currently there are

only a few macros defined:

Macro Description
$(HOME) Expanded to the fully qualified mCAT home path

$(THOME) Expanded to the fully qualified C-Compiler home path

$(BIN) Expanded to the fully qualified mCAT binary path

$(ETC) Expanded to the fully qualified mCAT ETC path (where mactinf.ini

itself is stored)

$(CORE) Expanded to a fully qualified path to the core file folder. Within the

core file folder, the core specific target files for the given core are

stored (see „std_rom“/“std_ram“)

Table 13: Path Replacement Variables

Using the macro syntax, you can also refer to other macros declared inside mcatinf.ini:
THOME=c:\gnude
TINCLUDE=$(THOME)\include

Please note that these macros use the same syntax the makefile macros use. However, the

macros are resolved on a lower level than the macros „vMake“ uses. Make will always read

the expanded value when reading a variable from mCATINF.INI.

With mCAT 2.20 it is also possible to refer to environment variables. Example:

The GNUDE GNU-Compiler set exports the environment variable
GNUDE=<gnude-path>

In the mCATINF.INI we can use
THOME=$(GNUDE)

to refer to the GNUDE path, in all subsequent macros in mcatinf.ini AND in the makefiles

and vmake ini-files where THOME is referred to. THOME is then replaced by the value of the

environment variable $(GNUDE).

348/399 © 2008 mocom software GmbH & Co KG

file:///C:/gnude

mCAT 2.20 XIII. mCAT Tools Documentation

1.3. MCATPATH

MDE uses one fundamental variable to access all information needed. This variable is the

mCAT HOME PATH! In one or the other way, mDE tools must know this home path to work

properly.

The mCAT home path is stored in „HKEY_LOCAL_MACHINE\\Software\\mocom\\mCAT“ as

item „Path“.

2. The Tools

2.1. CIMD

The CIMD.EXE program is a generator for IMD-Files. From a set of command line argu-

ments, it generates a “C” source code module that includes an IMD structure and all values

needed to initialize the IMD. The advantage of cimd.exe over the older imd.exe is that it can

be easily integrated into a projects makefile.

Note: Existing Projects will compile without changing the IMD. Use CIMD for new

projects only!

 *** CIMD 1.00 ***
cimd {options} <name> <imdfile.c>

options are:
 -public : imd structure is public (default private)
 -auto : autostart option, default is 'no autostart'
 -interrupt : setup imd mode MODE_INTERRUPT (default=MODE_TASK)
 -initmodule : setup imd mode MODE_INIT (default=MODE_TASK)
 -version=#.## : set initial version, default=1.00
 -priority=### : set initial priority to ### (0 < priority <255), default=128
 -stack=#### : set stack size, default is 1024
 -init=<name> : name of the init call, default is __cstart
 -main=<name> : name of the main call, default is TaskMain
 -imd=<name> : imd structure name, default is taskimd

This fragment from a makefile shows the usage:
OBJFILES = imd.$(REL) $(PROJECT).$(REL)

imd.$(REL): imd.c $(INCFILES)
imd.c: makefile

$(CIMD) -public -auto -init=NULL -version=1.00 mCAT/XPSERVER imd.c

Every time the makefile is changed (maybe because the version argument of cimd.exe was

changed) the xpimd.c is generated from the command line arguments.

© 2008 mocom software GmbH & Co KG 349/399

XIII. mCAT Tools Documentation mCAT 2.20

Make sure your generated imd file is the first in the list of modules to link!

2.2. IMD

The IMD.EXE program is obsolete, use CIMD for new projects.

2.3. VMAKE

VMAKE is an UNIX „make“ type program to control the compilation and linking process. If

not specified differently, vMake will only compile those modules that have been changed

since the last call of vMake. With bigger projects, that will reduce turn-around times dramati-

cally.

The duties of vMake are:

1. Executing the C-compiler and / or assembler as needed.

2. Pass arguments to compiler / assembler

3. Generate a linker control file using MKLNK.EXE

4. Link the project

5. Convert the resulting binary file to a hex file (S3/S7, „SHX“)

6. Tag the generated SHX file using S3PATCH.exe

2.3.1. Using Macros

Macros are essential for the understanding and use of vmake.

Defining a macro:
<macro-name> = value

Example:
PROJECT = thread

Referring a macro:
$(<macroname>)

Example:
OBJFILES = $(PROJECT).$(REL)

350/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

After replacement, the line will be: OBJFILES = thread.$(REL)

This documentation is not a full introduction to the general possibilities of a make program.

However, pre-defined macros, mCAT specific extensions and some other extra commands

not common with „classic“ 'make' will be described.

2.3.2. Command Line Format

vMake {-f <makefile>} {flags} {macro=value}

Macro definitions can be any valid make macro. The command line macros can be used like

any other makefile macros using the $(<macro-name>) syntax.

© 2008 mocom software GmbH & Co KG 351/399

XIII. mCAT Tools Documentation mCAT 2.20

Argument Comment
-a Re-make target. With a typical mCAT makefile, a re-link of the target is

made - but no compilation if there is no need.

-r Re-make all unconditionally

-f <makefile>. If no makefile is given, the default makefile „makefile“ is used.

-d Display the reasons why MAKE chooses to rebuild a target. All dependen-

cies which are newer are displayed

-dd Display the dependency checks in more detail. Dependencies which are old-

er are displayed, as well as newer.

-D Display the text of the makefiles as read in.

-DD Display the text of the makefiles and 'make.ini' (v4.ini / V103.ini).

-e Let environment variables override macro definitions from makefiles. Nor-

mally, makefile macros override environment variables. Command line

macro definitions always override both environment variables and makefile

macro definitions.

-i Ignore error codes returned by commands. This is equivalent to the special

target .IGNORE:.

-k When a non-zero error status is returned by a command, abandon work on

the current target, but continue with other branches that do not depend on

this target.

-n No execution mode. Print commands, but do not execute them. Even lines

beginning with an @ are printed. However, if a command line is an invoca-

tion of MAKE, that line is always executed.

-q Question mode. MAKE returns a zero or non-zero status code, depending

on whether or not the target file is up to date.

-s Silent mode. Do not print command lines before executing them. This is

equivalent to the special target .SILENT:.

-S Undo the effect of the -k option. Stop processing when a non-zero exit sta-

tus is returned by a command.

-t Touch the target files, bringing them up to date, rather than performing the

rules to reconstruct them.

Table 14: vmake Command line arguments

352/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

2.3.3. DEFAULT Makefile: v4.ini / v103.ini

VMAKE will read a „default“ file prior to reading - and executing - the makefile. Depending on

the installed c-compiler, this file is V4.ini (CC 4.0 and higher) or V103.ini (CC 1.03). The file

supplies some macro and rule definitions. For example, the default rules to compile c- and

asm-files are included.

To be able to customize the compilation process, a few macros are included in the rule defi-

nition. These can - but don't need to - be defined by the user.

Macro Example Comment
CMD CMD=-D$(CORE) -D$(HARD) Add flags and definitions to the c-

compilers command line

APPCMD APPCMD=-D$(CORE) Add flags and definitions to the as-

sembler preprocessors command line

Table 15: Passing extra options

2.3.4. The Basic Structure of an mCAT Makefile

We use the makefile from the thread example to describe the basic structure.

The header includes some comments. We use PRINT instead of real comments, so that the

comment will be displayed every time the makefile is invoked.
PRINT
PRINT ** THREAD PROGRAMMING EXAMPLE **
PRINT
PRINT (c) 1999 mocom software GmbH & Co KG
PRINT Author: Volker Goller
PRINT

The PROJECT macro defines the project name used by several tools. This is the name of

the main „c“ („$(PROJECT).c“) or „asm“ („$(PROJECT).s“) source file as well as the name of

the hex file („$(PROJECT).shx“) file to be generated.
PROJECT = thread

The TARGET macro is used to select an address descriptor file (target file, „.trg“). If the tar-

get file $(TARGET).trg exists in the same sub-dir the makefile is located, it is used. If not, it

is checked if TARGET is an item within the mCAT section of the „mcatinf.ini“ file. In that

case, the value of this item is the file name of the target file to be used.

© 2008 mocom software GmbH & Co KG 353/399

XIII. mCAT Tools Documentation mCAT 2.20

In the thread examples makefile the value std_ram is assigned to the macro TARGET.

std_ram can be found in the mcatinf.ini file.
TARGET = std_ram

You may want to pass the core name as a preprocessor macro to the c-compiler. That al-

lows you to use the C preprocessor to customize you program code depending on the core

hardware it should work with. To do that, we use the CMD macro:

CMD = -D$(CORE)

Within your C code, you can simply write thinks like:

#ifdef NET_H /* CORE = NET_H: CPU is TMP95C063 */

#include <t95c063.h>

#endif

The OBJFILES macro is a list of all user supplied object files that are needed to correctly link

the project. If more than one object is used, just add them to this line (separated by a

space). If CIMD is used to create an imd file, the imd object must be the first in the list.

See CIMD.

Changed: In mCAT Environment 2.20 the “.rel” extension in makefiles is replaced

by the macro “.$(REL)”. This allows it to easily adapt the environment to different

C-Compiler packages.

OBJFILES = imd.$(REL) $(PROJECT).$(REL)

The list of include files is used to describe dependencies other than the relation of source to

object files. One example would be a commonly used header file or the makefile itself!

Whenever you change makefile, a recompile would be forced!
INCFILES =

The main rule describes how to make a hex file out of the object files if one or more object

files are newer than the hex file. It takes four steps to make the hex file out of the objects:

1. Generate a linker control file using MKLNK.EXE

2. Link the project using the Toshiba linker

3. Tag the generated ABS file using S3PATCH.EXE “$(S3PATCH)”

354/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

4. Convert the ABS file to a downloadable hex file (S3/S7, „SHX“)

$(PROJECT).shx: $(OBJFILES)
$(MKLNK) $(TARGET) $(PROJECT) $(OBJFILES)

 $(LD) $(PROJECT).LNK -e LibInit -o$(PROJECT).abs
 $(CONVERT) $(PROJECT).abs $(OF) $(PROJECT).shx

$(S3PATCH) -l=$(PROJECT).map $(PROJECT).shx

Finally, we have to define the dependencies of the object files. The default entry is the entry

for the main source file ($(PROJECT).c = thread.c). We include the INCFILES macro at the

end of line. This will make sure that changes to the files included in the macro INCFILES will

force a re-build, too.

$(PROJECT).$(REL): $(PROJECT).c $(INCFILES)

2.3.5. Extended Commands

Commands are build-in functions that extends the possibilities of targets & macros.

PRINT

PRINT

vMake 2.01 supports a PRINT command. It allows an user to print a text or macro value at

runtime. The text is send to stdout. Example:

PRINT
PRINT ** Hello, this is a makefile **
PRINT
PRINT
PRINT CORE=$(CORE)

should output (assuming $(CORE) = FY64):

 ** Hello, this is a makefile **

 CORE=FY64

The PRINT command is a big help for debugging makefiles!

INCLUDE

The include command can be used to load additional macros from another file. The filename

can be a constant text, a macro value or a combination of both:
include debug.mak

© 2008 mocom software GmbH & Co KG 355/399

XIII. mCAT Tools Documentation mCAT 2.20

or
include $(HARD).mak

356/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

SETINF

vMake can read any item from the mCAT section of the mcatinf.ini file. All items read can

be overwritten inside vMake by makefile macro definitions. But these changed values will not

be written back to mcatinf.ini!

However, item values in mcatinf.ini can be changed from within a makefile by use of com-

mand SETINF.

The syntax is:
SETINF <item>=<value>

If a value has to include a path macro instead of a specific path, the path macro must be

prefixed by the „\“ backslash escape character!
SETINF set_ram=$(CORE)\std_ram.trg

will result in
set_ram=FY64\std_ram.trg

while
SETINF set_ram=\$(CORE)\std_ram.trg

will result in
set_ram=$(CORE)\std_ram.trg

2.3.6. MKLNK

MKLNK is a program that generates a linker control file for Toshibas Linker from a given

template file and a target address descriptor file. The program was designed to fix some

problems that arise while using Tohiba tools with vMake:

• With the Toshiba tools the command line is limited in size

• The addresses where to place data and code cannot be passed via command line

• The linker control file is pretty complex and feature-rich. However, for 99% of all mCAT

applications there is no need to use more than just a few standard statements in the link-

er file.

MKLNK will create an <project-name>.lnk file from the template and the target file. MKLNK

accepts a few arguments:

© 2008 mocom software GmbH & Co KG 357/399

XIII. mCAT Tools Documentation mCAT 2.20

mklnk <project-name> <target-name> <obj-file> {obj_file} .. {obj_file}

Where project-name is the name of the main object file (see example THREAD). The target-

name is the name (without extension) of the target file that should be used. If the target file

(<target-name>.trg) is available in the current directory it is used. If not, MKLNK will search

the section „mCAT“ within mcatinf.ini for an item called <target-name>. The value of this

item is a path to the target file (including path, filename and extension) that should be used.

For example, the predefined targets std_rom and std_ram are defined there.

Within the linker template file (default.lnk for tools V4 and default.v13 for tools V1.03) a few

macros can be used.

Macro Comment
@PROJECT The name of the project from the command line

@OBJFILES Will be replaced by the object files given on command line

@TLIB The path to the C-Compiler runtime libraries read from mcatinf.ini

@CLIB The path to the mCAT runtime libraries read from mcatinf.ini

Table 16: Macros used in a linker control file

Additionally, all items from the ADDR section of a target file can be used as a macro. Usually

the following items are defined (and used by default.lnk / default.v13):

Macro INI Item Comment
@RAMSTART ramstart The first address in RAM the application can use

@RAMLENGTH ramlength The length of the RAM area the application can use

@ROMSTART romstart The first address in ROM the application can use

@ROMLENGTH romlength The length of the ROM area the application can use

Table 17: Address macros used in a linker control file

2.3.7. S3PATCH

The S3PATCH program reads the Motorola SS/S7 files generated by the compiler/linker and

modify them in four ways:

1. Convert to a unique S3/S7 record length that is optimal for use with WLGO to improve

download times. You can also choose other values for record length using the option

-s=<reclen>. Example: if you download your programs using BAPIMON, use a record

length of 240 for best performance.

358/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

2. Fills gaps in the S3/S7 records. The Toshiba compilers do not emit code if not needed.

That makes the S3/S7 image very ugly to handle when you have to program FLASH

memory 32-Bit wise. S3PATCH fills those gaps.

3. Insert current daytime into the IMD-Structures found in the image. This is an additional aid

to provide compile time information at runtime. When using the modules command of

SYSMON this compile time is displayed.

4. Insert ROM and RAM area information into the extended IMD sections. The information is

usually extracted from the mapfile the linker generates.

 *** S3PATCH 1.02 ***

ERROR: Unknown argument

s3patch [options] <filename>

 's3patch' will patch and replace the given S3/S7 file.
 It replaces former tool 'tag.exe'

 -s=n: n=S3 record length
 -b : Use a given time as build instead of the current machine time
 -k : Optional key.
 -r : Resize S3 record size. No other modification made.
 -d : RAM area. <base> is the base addr, <length> is the length.
 -c : ROM area. <base> is the base addr, <length> is the length.
 -t=<target_file>
 : A optional mCAT target file containing RAM /ROM info

 -l=<link_file>
 : A optional linker file containing RAM /ROM info

 -a={-}<offset>
 : Add offset to emited addresses

2.3.8. TAG

TAG.EXE is obsolete, use S3PATCH instead.

2.4. Terminal program

The terminal program available is wLGO (32-Bit Windows95/98/NT). LGO is an abbreviation

for „Load and Go“.

© 2008 mocom software GmbH & Co KG 359/399

XIII. mCAT Tools Documentation mCAT 2.20

WLGO is a very basic implementation of a Terminal, just perfectly suited for mCAT develop-

ment.

2.4.1. Features

• After startup the programs will check the current assigned serial line to identify the at-

tached mCAT system.

• A SHX file can be loaded from command line or by use of F3 key.

• Received data log file. This feature is toggled using the F2 key

• A little help can be displayed using the F1 key.

• F4 will clear the current screen.

• A light weight ANSI Terminal emulation is integrated into both programs, too. The emula-

tion is optimized and tested to work with the screen control macros defined in ANSI.H.

• The programs are using the mCAT baudrate (19200) by deafult.

• It is possible to PASTE text from the clipboard into a session. However, currently it is not

possible to copy text back to the clipboard.

• The serial line options, the font and the default directory for the log files can be set via op-

tions from the main menu.

If you have to connect to another comport, you can change the port to use in the WLGO

Menu “Einstellungen->Schnittstelle”.

We need 19200-8N1, no handshake, to communicate with mCAT. You will find the setup at

“Einstellungen->Schnittstelle->Konfiguration” (the Button shown in the figure above).

360/399 © 2008 mocom software GmbH & Co KG

Figure 25: wLGO, Changing the COMPORT

mCAT 2.20 XIII. mCAT Tools Documentation

© 2008 mocom software GmbH & Co KG 361/399

Figure 26: wLGO, Setting the COM parameter

XIII. mCAT Tools Documentation mCAT 2.20

2.5. Hex File Tools

2.5.1. HEX2IMG

HEX2IMG will convert an INTEL hex file or an MOTOROLA S3/S7 hex file into a binary im-

age file. Several options are supported:

hex2img <hex-file> {flags}

Flag Description
-E=<end> Specifies the highest address allowed for the image. From last byte

defined in the hex file until <end> the image is filled with 0xff.

-O=<offset> Defines the start address or offset of the image. Imagine an SHX file

defining the first byte at 0x800000. Without the option „-

O=0x800000“, the output file would be at least 8MB (0-0x800000) in

size!

-A Auto offset. The image starts at the lowest address defined within the

hex file.

-C Same as –o=0x8000 –e=0xffff

-M Generate map file (recommended). This option is very useful when

used with „merged“ hexfiles (see hexmerge.exe).

Table 18: HEX2IMG Arguments

2.5.2. IMG2HEX

IMG2HEX does the opposite of HEX2IMG: It creates hex files form images.

img2hex <bin-file> <base_addr> {flags}

362/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

Flag Description
<bin-file> An binary image file - maybe generated using hex2img ...

<base-addr> The base address or offset of the file. That is the physical address in

memory of the first byte in the file.

–i By default, img2hex generates Motorola S3/S7 files. Issuing a „–i“

flag will force INTEL extended hex format instead (the INTEL format

is limited to addresses < 0x100000!).

–y Generate an INTEL extended hex file and add the checksum over all

data bytes to the end of file. LGO will be able to read this checksum.

This option is used to generate files that can be downloaded via the

TMP95FY64 rom-loader.

Table 19: IMG2HEX Arguments

2.5.3. HEXMERGE

HEXMERGE is used to create merged hex files. Merged hex files consist of several indepen-

dent hex files into a single file, usually separated by lines starting with an at-character (@)

and containing the path of the hex source file included next.
HEXMERGE {$} <destination-file> <{file-list} | {@file}>

All files given at command line behind destination are copied to destination. Instead of a list

of files a file containing such a list (one file per line) can be used. In this case an at-character

(@) must begin the list file name.

If a '$' is inserted as first argument the filenames of the modules are not emitted to the desti-

nation file.

Please note that if HEX2IMG is used with a merged hex file and generation of a MAP file is

allowed, the mapfile will include all modules with path and size!

Examples:

hexmerge load app int shlib

will result in a single hex file called LOAD.SHX:
@app.shx
S3.....
@int.shx
S3...
@shlib.shx
S3...
S7...

© 2008 mocom software GmbH & Co KG 363/399

XIII. mCAT Tools Documentation mCAT 2.20

If a text file (lets say merge.lst) exists containing:
app.shx
int.shx
shlib.shx

then an a alternate use of hexmerge is possible:

hexmerge load @merge.lst

2.6. Little Helpers

2.6.1. SETVAR

SetVar is used to change items in mcatinf.ini from a command line or from within a batch file:

SETVAR section item value

section: The section of mcatinf.ini, usually „mCAT“

item: Any item inside the given section. If the item does not exists, it will be

created.

value: Any value you like to set. If value is a path (maybe including mCATINF

path macros) or contains spaces, use quotation marks around the value.

Example:

setvar mcat linktmpl "$(ETC)\default.lnk"

Sets the default linker template to „$(ETC)\default.lnk“ (for use with CC V4.xx).

2.6.2. MCATPATH

The mCATPATH registry entry can be displayed and changed using the mCATPATH.EXE

tool:
MCATPATH {path}

If {path} is not given, the current path is displayed.

364/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

2.7. MIC

MIC is a compiler that generates a set of files needed to create SharedLibraries for mCAT.

The files generated should NEVER be edited manually.

MIC does not support the Toshiba C-Compiler Version 1.03

2.7.1. The MIC Source File

Within a MIC source file contains information needed to generate:

• a function wrapper file (wrapper.c) to convert the mCAT calling convention into c calling

convention (C only, with assembler we assume that your functions will use the mCAT call-

ing conventions).

• an include file declaring the prototypes of the wrapper functions (wrapper.h).

• an init file containing the TaskInit function, a jump table, an IMD and all structures needed

to attach and use a SharedLibrary.

• a common include file defining library internal structures and constants (common.h)

• The header files needed by an application to use the library functions (interface files)

The source file uses the extension „.ldf“ (library definition file).

Please see the shared library sample in „cc\shlib“ for details.

© 2008 mocom software GmbH & Co KG 365/399

XIII. mCAT Tools Documentation mCAT 2.20

Comments

A comment is delimited by the '#' character and the end-of-line.

Example:
THIS IS A COMMENT

FMT

The FMT (FORMAT) keyword allows you to control the “face” of the generated code and se-

lect some styles. The FMT statement should be the first statements in the file!

Modifiers:

1. NOLOCAL: No LOCAL structure is generated and it is not included as an argument. This

is helpful if you want to keep your library code compileable under other operating sys-

tems.

2. NOSCORE: Generates underscores for the WRAPPER functions and none for the imple-

mentation functions. That is the opposite of the default!

3. USERLIB: This is a MUST for users! The user libraries use different ordinal numbers than

the system libraries. System libraries are technically the same thing as user librarys – the

only difference is that system libraries are reserved for system extension by MOCOM.

LIBID

The LIBID statement defines a name for the library. This name is used to register the library

in the USRLIB.INI file ($(ETC)\usrlib.ini. The major library number is allocaed by use of this

name.

Example:
LIBID MyShLib

VERSION

The version statement allows to control the version information of the Library's IMD. The

Version should be incremented with each change to the LDF file or the shared library

project.

Example:
VERSION 1.00

366/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

ARG

A few command line arguments can be set using the ARG statement.

Keyword Argument
NAME -n=<name> give an IMD name (max. 16 char)

USEINIT -u call user init code "InitLibrary(LOCAL *local)"

OLDSTYLE -l LIBDEF compatible mode:

• no wrappers (wrapper.c, wrapper.h)

• no <libname>.s stub but <libname>.inc

AINCLUDE -ia=<path> set alternate ASM include path (for test etc.)

CINCLUDE -ic=<path> set alternate C include path (for test etc.)

Table 20: MIC, the ARG argument

Example:
ARG NAME=Sample/ShLib AINCLUDE=include CINCLUDE=include USEINIT

COMMON / ENDCOMMON

The text between COMMON and ENDCOMMON is copied to common.h without modifica-

tion. Place internal structure and constant definitions HERE!

Example:
COMMON
 typedef struct {
 long cnt;
 } LOCAL;
ENDCOMMON

Please note that the INCLUDE / ENDINCLUDE section (see next chapter) is

copied to common.h as well!

INCLUDE / ENDINCLUDE

© 2008 mocom software GmbH & Co KG 367/399

XIII. mCAT Tools Documentation mCAT 2.20

The text between INCLUDE and ENDINCLUDE is copied to <ldf-file-name>.h. Place all pub-

lic structure and constant definitions here. This is the interface to the library!

If the modifier @ASM is used behind INCLUDE, the text between INCLUDE @ASM and

ENDINCLUDE is copied to <ldf-file-name>.def.

MIC uses the default include directories from mcatinf.ini to place the interface files

right there! If you want mic to use different directories, use the command line op-

tions –ic/-ia or the ARG statement!

Example:
INCLUDE
 typedef struct {
 short len;
 char string[1];
 } LSTRING;
ENDINCLUDE

368/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

LIBDEF

The mCAT SharedLibrary naming conventions recommend that every function should start

with a short „Family“ pattern - Modula-2 programmers know this pretty well! The LIBDEF

statement will define the family pattern for the next functions declared behind this statement

- until next LIBDEF.

The syntax used to declare function prototypes is pretty similar to the C syntax, with a few

exceptions:

1. The function name comes first

2. The prototype is introduced with a '?'

3. If the functions will be implemented in assembler, a @ASM modifier may follow. This will

exclude this function from the wrapper files!

4. The pre-defined functions RESERVED just reserves a function entry for future use. This

will keep libraries binary compatible.

5. If no “LIBDEF” prefix should be used, use the modifier anonymous!

Example:
LIBDEF Swap # assembler functions
 Word64 ? @ASM void (void *w64);
 Word32 ? @ASM void (void *w32);
 Word16 ? @ASM void (void *w16);
 RESERVED
 RESERVED
LIBDEF Statistics # implements a library invokation statistic
 GetCounter ? short (void); # Use: short StatisticsGetCounter (void);
LIBDEF ANONYMOUS
 keypressed ? int (void); # Use: int keypressed (void);

© 2008 mocom software GmbH & Co KG 369/399

XIII. mCAT Tools Documentation mCAT 2.20

END

A LDF file must be terminated with an explicit END statement.

Example:
NEVER FORGET ...
END

2.7.2. The MIC Command Line Arguments

 Argument
-g generate all library files (wrapper.c, common.h, ...)

-i generate the interface files (<ldf-name>.h, <ldf-name>.def)

-y override all. If not specified MIC will query before overwriting existing

files.

-c library will be written in C

-asm library will be written in assembler

-n=<name> give an IMD name (max. 16 char)

-u call user init code "InitLibrary(LOCAL *local)"

-l LIBDEF compatible mode:

• no wrappers (wrapper.c, wrapper.h)

• no <libname>.s stub but <libname>.inc

-ia=<path> set alternate ASM include path (for test etc.)

-ic=<path> set alternate C include path (for test etc.)

-h Used for all non-Toshiba targets. This option is usually automatically set

when using the $(MIC) macro to execute mic from a makefile.

Table 21: MIC, command line arguments

3. Creating own Projects

An own program should be located in its own sub-dir, too. Or within any other private direc-

tory.

370/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIII. mCAT Tools Documentation

3.1. Creating a Makefile and Executing the Program

• Copy „makefile“ template from „<mcatpath>\cc“.

• Load makefile into a program editor.

• Set project name to „myfirst“

• Set target to „std_ram“

• Save makefile and exit the editor

• Execute vMake

• Download myfirst.shx using wLgo / Lgo

• Use „init 402000“ to start the module

3.2. Creating a TARGET File

If several independent modules should be used, std_ram and std_rom targets can be used

as a template for own target files. If the modules should be useable on different hardware,

create new targets within the core sub-directories (<mcatpath>\etc\<core_name>) as the

std_rom/std_ram does.

© 2008 mocom software GmbH & Co KG 371/399

XIV. mCAT Release Documentation mCAT 2.20

XIV. mCAT Release Documentation

1. MCAT 2.20

1.1. Porting Existing Applications

This is the first portable mCAT Version. The current release is available on ARM7 Micropro-

cessor architecture platform – the TSMARMCPU. There are a few things to consider and to

take care of when porting an existing mCAT application to mCAT 2.20.

1.1.1. Changes Needed

There are only a few changes needed to port existing mCAT applications to 2.20/ARM7 – As

long as they do not use assembly code or hardware related stuff. If your application uses Ex-

pressIO for process i/o access, it should be easily portable.

1.1.1.1. The Makefile(s)

Makefiles changed a bit to support the GNU and Metaware C-Compilers. First, replace the

“.rel” extensions in your makefile by “.$(REL)”. This macro will be automatically replaced by a

suitable extension at runtime. Second, exchange the linking sequence. Your existing may

look like this:
$(PROJECT).shx: $(OBJFILES)

$(MKLNK) $(TARGET) $(PROJECT) $(OBJFILES)
 $(LD) $(PROJECT).LNK -o$(PROJECT).abs

$(TAG)
 $(CONVERT) -o $(PROJECT).shx $(PROJECT).abs

To be conform with the mCAT2.20, replace this sequence with:
$(PROJECT).shx: $(OBJFILES)

$(MKLNK) $(TARGET) $(PROJECT) $(OBJFILES)
 $(LD) $(PROJECT).LNK -o$(PROJECT).abs
 $(CONVERT) $(PROJECT).abs $(OF) $(PROJECT).shx

$(S3PATCH) -l=$(PROJECT).map $(PROJECT).shx

1.1.1.2. The C-Source

The C-Source needs only minor but very important changes in the first place.

372/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

1.1.1.2.1. MsgUpdate, MsgWait, ThreadSleep, ThreadSleepEx, ThreadDelay

All these functions expect a timeout value as one of there arguments. The traditional value

for no timeout was 0. That is no longer true for mcat 2.20. Use the constant SYS_WAIT_IN-

FINITE instead of 0. If you don't change this, your application will not operate! If you call one

of these functions with 0, they will return IMMEDIATELY.

1.1.1.2.2. Includefiles

With mCAT 2.10 almost all system include files have been included via mCAT.h. For some

technical reasons, this is not longer true for memmgr.h. So if you need memory functions

like MemAlloc or MsgPoolFree or any other, you have to add
#include <memmgr.h>

to your source.

Another include file also needs a modification. You may have used SIMPLEIO functions

(such as WrStr(), WrLn(), ...) to print debug messages. Therefore you included
#include <io.h>

This include is no longer available. That is because its name conflicts with a standard C in-

clude file. Please change to:
#include <simpleio.h>

1.1.2. ARM7 Watchpoints

1.1.2.1. Miss Aligned Access

The ARM7 can not access long words (32-Bit) on unaligned addresses (addresses where

the lower two bits have another value than 0) and it can not access short words (16-Bit) on

unaligned addresses (addresses where the lowest bit is not 0).

Usually this is not a problem and the compiler will fix this problem for you. However, some-

times you may run into trouble. This happens for example when you pass a void or byte

aligned pointer to some function and cast it then into an struct pointer or a integer pointer.

The first can point to any byte on any address. The second will usually crash when the point-

er is used for the first time:
void function_crash(INTEGER *hugo)
{

if (hugo) *hugo++;
}

...

© 2008 mocom software GmbH & Co KG 373/399

XIV. mCAT Release Documentation mCAT 2.20

UINT8 paul[4];
void pass;
...
 pass = &paul[1];
 function_crash(pass);

Even if this example is a bit far-fetched, it is a fact that constructions like this may occur in

you source – and usually the problem is not so easy to understand as it is in our example.

Whenever an unaligned access occurs, the RAM will execute a system fault trap. This is a

non recoverable situation. It will output a CPU register status and die away (executing a Sys-

Reset). This can easily be demonstrated using SYSMON command out:
2+>out long 402004 3 0

CPU FAULT: DATA ABORT [UNALIGNED ACCESS]
IN THREAD 0x005ec634 OF TASK #14
reg: r0 =00000004 r1 =00000002 r2 =007f8cec r3 =04402003
 r4 =00000000 r5 =007f8c60 r6 =007f8c5f r7 =007f88a0
 r8 =007f8cbc r9 =00000003 r10=00000000 r11=007f88b4
 r12=00000000 sp =005ec1bc lr =00be6778 pc =00be88a0
 sr =60000010
 -- RESETING NOW!!!

Please note that the value for the pc (program counter) printed is the address of

the instruction that causes the fault.

1.1.2.2. Structure Member Alignment

Because single access data fetch is by far the fastest way to transfer data on the ARM7, the

compiler will try to align members in structures in a way that it can fetch 32-bit and 16-bit val-

ues with a single instruction. The penalty for a fetch of a 32-Bit value from an unaligned ad-

dress is high:

32-Bit fetch, aligned:
ldr %r3,[%r8] ; one bus cycle to read data

32-Bit fetch, unaligned:
ldrb %r3,[%r8, #3]
ldrb %lr,[%r8, #2]
orr %r3,%lr,%r3,lsl #8
ldrb %lr,[%r8, #1]
orr %r3,%lr,%r3,lsl #8
ldrb %lr,[%r8, #0]

374/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

orr %r3,%lr,%r3,lsl #8

So the compiler is wise to do preventive unaligned fetches. However, sometimes it is neces-

sary to have packed structures. The only problem is that there is no standard way to tell a

compiler to pack a structure. Therefore, if you have to pack a structure use the following

macro:
typedef PACKED_STRUCTURE struct {

... some definition
} GNU_PACKED_STRUCTURE <struct-name>;

The structure alignment problem may occur if you have messages defined that are derivated

from mCAT messages (MSG). The mCAT message itself is packed but its length is not

aligned to 32-Bit. Usually this is no problem as long as you do not rely on a specific message

memory layout. But if you run into problems, you must use the macros PACKED_STRUC-
TURE and GNU_PACKED_STRUCTURE.

1.1.3. What if I Want to Maintain my Application with both the 2.10 and the 2.20?

Keep your existing mCAT2.10 makefile by renaming it to make210.mak. Insert the following

line into this makefile
CMD=-DSYS_WAIT_INFINITE=0

You may already have a CMD line:

CMD=-D$(CORE)

In this case append the above separated by a space:

CMD=-D$(CORE) -DSYS_WAIT_INFINITE=0

If you use packed structures, you have to add:
CMD=-D$(CORE) -DSYS_WAIT_INFINITE=0 -DPACKED_STRUCTURE -DGNU_PACKED_STRUCTURE

You can execute the new makefile with the option -f of vmake:
vmake -f make210.mak

Your C-Source needs no change.

1.1.4. If it doesn't Work!

MCAT is an elaborated software system. Usually, your application should be compilable after

those changes. However, if you got any problems to get your existing code compiled, please

do not hesitate to send your source code and makefile(s) to support@mocom-software.de.

© 2008 mocom software GmbH & Co KG 375/399

mailto:support@mocom-software.de

XIV. mCAT Release Documentation mCAT 2.20

2. Hardware Related Information

2.1. General Information

2.1.1. USRLED and BITBUS activity LED

If the hardware supports at least one software controlable LED, mCAT „flickers“ this LED at

about 0.6 sec. By use of USRLED call the user can take control of this LED for private use.

MCAT will not touch this LED while it is under user control. This function can be used to con-

troll additional LEDs, too.

void USRLED(short usr, short on)

Parameter: if „usr“ is 0, the LED is set under system control.

If “usr” is set to 1, the LED is under user control.

Any other value for 'usr' can be used to control additional LEDs.

If „on“ is TRUE (not 0), the LED is switched ON else OFF.

Include: <ticker.h>

Examples:

USRLED(1,0); // set user control, LED OFF

USRLED(1,1); // set user control, LED ON

USRLED(0,0); // pass control back to system

USRLED(1,1); // switch additional LED ON, system LED is not affected.

2.1.2. Boot Control

To force boot mode (= to start BOOTMON instead of mCAT), usually a jumper or „magic“

switch can be used. This is different for all hardware devices and must be checked!

376/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

2.2. Hardware Reference

2.2.1. NET-A7

2.2.1.1. CPU + mCAT CORE/HARD Macro

CPU=S3C4530 // SAMSUNG ARM7

CORE=S3C4530

HARD=NETA7

2.2.1.2. Memory

Memory Access Type Location User
EPROM/

BOOTFLASH

16-Bit FLASH 000000h-3FFFFh -

FLASH 16-Bit AM29F160 040000h-1FFFFFh 040000h-1DFFFFh
RAM 16-Bit 512k 800000h-87FFFFh 802000h-HEAP-

START*

EEPROM I2C, 16-Bit ST24C64 0..1fffh 40..1EFF

Table 22: NETA7 Memory Layout

2.2.1.3. USRLED

The green Led is used as USRLED (system LED).

The yellow Led signals ETHERNET traffic.

The red Led can be switched under user control using USRLED(2,<on>). Please note that

switching this ALARM-LED does not influence the function of the system LED.

2.2.1.4. BOOT Control

The TSMCPUARM is forced into BOOTMODE using the BOOTJUMPER J1

2.2.2. TSMARMCPU

2.2.2.1. CPU + mCAT CORE/HARD Macro

CPU=S3C4530 // SAMSUNG ARM7

CORE=S3C4530

© 2008 mocom software GmbH & Co KG 377/399

XIV. mCAT Release Documentation mCAT 2.20

HARD=TSMARMCPU

2.2.2.2. Memory

Memory Access Type Location User
EPROM/

BOOTFLASH

8-Bit EPROM/FLASH

> 64k

000000h-7FFFFh -

FLASH 32-Bit 2*AM29F160 800000h-BFFFFFh 800000h-BCFFFFh
RAM 32-Bit Std. 4 * 512k 400000h-5FFFFFh 402000h-HEAP-

START*

EEPROM I2C, 16-Bit CAT34WC02 0..3Fh 10..7F

Table 23: TSMARMCPU Memory Layout

2.2.2.3. USRLED

The green Led is used as USRLED.

The yellow Led signals BITBUS traffic.

2.2.2.4. BOOT Control

The TSMCPUARM is forced into BOOTMODE if the TSM-Bus Terminator is unplugged. Be-

cause operation of TSM-Systems without a Terminator is prohibited, this is also a safety

mechanism.

2.2.3. TSMCPUH2

2.2.3.1. CPU + mCAT CORE/HARD Macro

CPU=TMP94C251 (“H2”).

CORE=H2_COR

HARD=TSM_H2

2.2.3.2. Memory

The TSMCPUH2 is available in four versions:

• 32-Bit Version with an 8-Bit BOOT Flash, a 2MB 32-Bit FLASH and 2MB 32-Bit RAM

378/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

• 8-Bit Version with a single 8-Bit Flash and 512k 8-Bit RAM

32-Bit Configuration

Memory Access Type Location User
EPROM/

BOOTFLASH

8-Bit EPROM/FLASH

> 64k

C00000h-FFFFFFh -

FLASH 32-Bit 2*AM29F800 800000h-9FFFFFh 800000h-9BFFFFh
RAM 32-Bit Std. 4 * 128k 400000h-47FFFFh 402000h-HEAP-

START*

4 * 512k 400000h-5FFFFFh 402000h-HEAP-

START*

EEPROM I2C, 16-Bit CAT34WC02 0..3Fh 30-3Fh

Table 24: TSMCPU32H2 Memory Layout

8-Bit Configuration

Memory Access Type Location User
FLASH 8-Bit AM29F040 800000h-87FFFFh 800000h-84FFFFh
RAM 8-Bit 512k 400000h-47FFFFh 402000h-HEAP-

START*

EEPROM I2C, 16-Bit CAT34WC02 0..3Fh 30-3Fh

Table 25: TSMCPU08H2 Memory Layout

* Heapstart can be read using the “MEM” command of sysmon.

As long as no special features of the current memory model are used (flash page size, size

of memory), applications will not be affected by the different memory models - beside the

fact that the 8-Bit model limits the speed of the CPU!

Applications developed for TSM900CPU must – at least – be recompiled!

2.2.3.3. USRLED

The green Led is used as USRLED.

The yellow Led signals BITBUS traffic.

© 2008 mocom software GmbH & Co KG 379/399

XIV. mCAT Release Documentation mCAT 2.20

2.2.3.4. BOOT Control

The TSMCPUH2 is forced into BOOTMODE if the TSM-Bus Terminator is unplugged. Be-

cause operation of TSM-Systems without a Terminator is prohibited, this is also a safety

mechanism.

2.2.4. DINX

2.2.4.1. CPU + mCAT CORE/HARD Macro

DINX uses an TMP95C265 or TMP95FY64

TMP95FY64: CORE=FY64

TMP95C265: CORE=C265

HARD=DINX

2.2.4.2. Memory

Memory Access Type Location User
FLASH

(C265)

8-Bit AM29F800 800000h-8FFFFFh 800000h-8BFFFFh

FLASH

(FY64)

16-Bit AM29F200

comp.

FC0000h-FFFFFFh FC0000h-FDFFFFh

RAM 8-Bit 512k 400000h-47FFFFh 402000h-HEAP-

START*

EEPROM I2C, 16-Bit CAT34WC02 0..3Fh 10..3Fh

Table 26: DINX Memory Layout

* Heapstart can be read using the “MEM” command of sysmon.

2.2.4.3. USRLED

The INFO Led (green) is used as USRLED.

2.2.4.4. BOOT Control

Use a pencil to press and hold „boot mode“ button. Issue a RESET command or switch pow-

er OFF/ON. Release button.

380/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

2.2.5. NET900H/H+

2.2.5.1. CPU + mCAT CORE/HARD macro

NET900H/H+ use TMP95C063.

CORE=NET_H

HARD is not defined.

2.2.5.2. Memory

Memory Access Type Location User
FLASH 16-Bit AM29F800 800000h-8FFFFFh 800000h-8BFFFFh
RAM (H) 8-Bit 512k 400000h-47FFFFh 402000h-HEAP-

START
RAM (H+) 16-Bit 1024k 400000h-4FFFFFh 402000h-HEAP-

START
EEPROM I2C, 16-Bit CAT34WC02 0..3Fh 30-3Fh

Table 27: NET900H Memory Layout

* Heapstart can be read using the “MEM” command of sysmon.

2.2.5.3. USRLED

No LED is provided on the NET900 modules.

2.2.5.4. BOOT Control

Jumper J20 is used for BOOT control. Setting the jumper forces BOOTMON operation.

2.2.6. ECBCPU900

2.2.6.1. CPU + mCAT CORE/HARD Macro

ECBCPU900 uses TMP94C241 (“H2”).

CORE=H2_COR

HARD=ECB_900

© 2008 mocom software GmbH & Co KG 381/399

XIV. mCAT Release Documentation mCAT 2.20

2.2.6.2. Memory

Memory Access Type Location User
FLASH 16-Bit AM29F800 800000h-8FFFFFh 800000h-8BFFFFh
RAM 16-Bit Std. 128k 400000h-41FFFFh 402000h-HEAP-

START*

EEPROM I2C, 16-Bit CAT34WC02 0..3Fh 30-3Fh

Table 28: ECBCPU900 Memory Layout

* Heapstart can be read using the “MEM” command of sysmon.

2.2.6.3. USRLED

The green Led is used as USRLED.

The yellow Led signals BITBUS traffic.

2.2.6.4. BOOT Control

BOOT mode is controlled by Jumper J50. Close it to force BOOTMON mode.

2.2.7. BIT900

2.2.7.1. CPU + mCAT CORE/HARD Macro

BIT900, BIT900a, BIT900-104 and BIT900-PCI use TMP95C061.

CORE=T9H_COR

HARD=BIT_900 (REV < 9850) / HARD=BIT_900A (REV >= 9850)

2.2.7.2. Memory

Memory Access Type Location User
FLASH 16-Bit AM29F800 800000h-8FFFFFh 800000h-8BFFFFh
RAM 8-Bit Std. 128k 400000h-41FFFFh 402000h-HEAP-

START*

EEPROM I2C, 16-Bit CAT34WC02 0..3Fh 30-3Fh

Table 29: BIT900 Memory Layout

* Heapstart can be read using the “MEM” command of sysmon.

382/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

2.2.7.3. USRLED

The green Led is used as USRLED.

2.2.7.4. BOOT Control

BOOT mode is controlled by a bit in the ISA/PCI interface of the BIT900. It can be set using

a suitable driver.

2.2.8. TSM900

2.2.8.1. CPU + mCAT CORE/HARD Macro

TSM900 uses an TMP95C061.

CORE=T9H_COR

HARD=TSM_900

2.2.8.2. Memory

Memory Access Type Location User
FLASH 8-Bit AM29F40 800000h-87FFFFh 800000h-85FFFFh
RAM 8-Bit Std. 128k 400000h-41FFFFh 402000h-HEAP-

START*

EEPROM SPI, 16-Bit 93C66 0..FFh 10..FFh

Table 30: TSM900 Memory Layout

* Heapstart can be read using the “MEM” command of sysmon.

2.2.8.3. USRLED

The INFO Led (red) is used as USRLED.

2.2.8.4. BOOT Control

The TSMCPU900 is forced into BOOTMODE if the TSM-Bus Terminator is unplugged. Be-

cause operation of TSM-Systems without a Terminator is prohibited, this is also a safety

mechanism.

© 2008 mocom software GmbH & Co KG 383/399

XIV. mCAT Release Documentation mCAT 2.20

2.3. The Valid Interrupt-ID (intid) Values

384/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

Interrupt ID DMA start vec-
tor

TMP
95C061

TMP
95C063

TMP 95-
FY64

TMP
94C241

ARM7
S3C4530

IntReset - X X X X

IntSwi1 - X X X X

IntSwi2 - X X X X

IntSwi3 - X X X X

IntSwi4 - X X X X

IntSwi5 - X X X X

IntSwi6 - X X X X

IntSwi7 - X X X X

IntNMI - X X X X

IntWatchDog - X X X X

IntLine0 DMAV_INT0 X X X X

IntLine1 DMAV_INT1 X X

IntLine2 DMAV_INT2 X X

IntLine3 DMAV_INT3 X X

IntLine4 DMAV_INT4 X X X X

IntLine5 DMAV_INT5 X X X X

IntLine6 DMAV_INT6 X X X X

IntLine7 DMAV_INT7 X X X X

IntLine8 DMAV_INT8 X X X

IntLine9 DMAV_INT9 X

IntLineA DMAV_INTA X

IntLineB DMAV_INTB X

IntTimer0 DMAV_INTT0 X X X X

IntTimer1 DMAV_INTT1 X X X X

IntTimer2 DMAV_INTT2 X X X X

IntTimer3 DMAV_INTT3 X X X X

IntTimer4 DMAV_INTT4 X X

IntTimer5 DMAV_INTT5 X X

IntTimer6 DMAV_INTT6 X X

IntTimer7 DMAV_INTT7 X X

IntTimer4A DMAV_INTTR4 X X

IntTimer4B DMAV_INTTR5 X X

IntTimer5A DMAV_INTTR6 X X

IntTimer5B DMAV_INTTR7 X X

© 2008 mocom software GmbH & Co KG 385/399

XIV. mCAT Release Documentation mCAT 2.20

Interrupt ID DMA start vec-
tor

TMP
95C061

TMP
95C063

TMP 95-
FY64

TMP
94C241

ARM7
S3C4530

IntTimer6A DMAV_INTTR8 X

IntTimer6B DMAV_INTTR9 X

IntTimer7A DMAV_INT-

TRA

X

IntTimer7B DMAV_INT-

TRB

X

IntTimer8A DMAV_INTTR8 X X

IntTimer8B DMAV_INTTR9 X X

IntTimer9A DMAV_INT-

TRA

X X

IntTimer9B DMAV_INT-

TRB

X X

IntTimer8OV DMAV_INT-

TO8

X

IntTimer9OV DMAV_INT-

TO9

X

IntRx0 DMAV_IN-

TRX0

X X X X

IntTx0 DMAV_INTTX0 X X X X

IntRx1 DMAV_IN-

TRX1

X X X X

IntTx1 DMAV_INTTX1 X X X X

IntRx2 DMAV_IN-

TRX2

X

IntTx2 DMAV_INTTX2 X

IntAD DMAV_INTAD X X X X

IntDma0 - X X X X

IntDma1 - X X X X

IntDma2 - X X X X

IntDma3 - X X X X

IntDma4 - X

IntDma5 - X

IntDma6 - X

IntDma7 - X

386/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

Interrupt ID DMA start vec-
tor

TMP
95C061

TMP
95C063

TMP 95-
FY64

TMP
94C241

ARM7
S3C4530

INT_LINE_0 X

INT_LINE_1 X

INT_LINE_2 X

INT_LINE_3 X

INT_UART_TX_0 X

INT_UART_RX_0 X

INT_UART_TX_1 X

INT_UART_RX_1 X

INT_GDMA_0 X

INT_GDMA_1 X

INT_TIMER_0 X

INT_TIMER_1 X

INT_HDLC_TX_0 X

INT_HDLC_RX_0 X

INT_HDLC_TX_1 X

INT_HDLC_RX_1 X

INT_ETH_DMA_TX X

INT_ETH_DMA_RX X

INT_ETH_MAC_TX X

INT_ETH_MAC_RX X

INT_I2C X

Table 31: The Valid Interrupt-ID (intid) Values

3. BOOTMON SLDR Commands

3.1. The Serial Line LoaDeR

If BOOTMON is active, SLDR is available on ALL serial lines at 19200-8n1. Even if you can

use any serial line to get in touch with SLDR, you should only use one connection at a time.

If problems arise caused by other devices connected to other serial lines, simply unplug

them while working with BOOTMON!

SLDR supports a small subset of SYSMON commands. It uses almost the same syntax &

semantics.

© 2008 mocom software GmbH & Co KG 387/399

XIV. mCAT Release Documentation mCAT 2.20

3.2. Argument Format

As with SYSMON in mCAT, SLDR expects all arguments as hex values by default. A hex

value must start with a digit, so you will get an error trying:

eewrite 0 ff

The correct line is

eewrite 0 0ff

If you wish to use a decimal number, please use the „#“ char in front of the decimal value:

eewrite 0 #255

All input to SYSMON and SLDR must be lower case.

3.3. SLDR Commands

eewrite

Command is used to write values to the serial EEPROM. The format is:

eewrite <addr> <value>

The address range is limited by the used EEPROM. As a common rule we expect to address

0..255 words of EEPROM. If more than one EEPROM is used in the system, the msb of

<addr> is used to address the chip:

eewrite 102 4

Writes the word value „4“ to third word of chip 2!

blank

Checks a region of memory (usually within the FLASH) for programmability. If no arguments

are given, blank checks the region of a FLASH that is reserved for the mCAT kernel itself. If

non-blank regions are found, they are listed on the screen.

blank {<start-addr> <end-addr>}

388/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

reset

This command sets up the watchdog timer, disables all interrupts and waits for the watchdog

to reset the system. By using the watchdog, a real RESET is issued, it is not only a „jump“ to

the program start!

erase

Use erase to erase pages of the flash memory immediately. This command can be used to

remove dead user programs or even to remove mCAT itself. However, with delpage we offer

a more convenient command. See „delpage“.

erase <addr>

where <addr>is the start address of the page to be deleted.

delpage

The delpage command only marks pages of Flash for deletion rather than issuing the real

erase command. After marking several pages as „to be deleted“, a reset command is issued

and the pages are deleted at the restart process. This procedure is recommended for some

reasons:

• The fera module, that executes the erase process after reset, knows much more about

the real FLASH used. For example in cases where the reserved mCAT region consists of

multiple Flash pages (as is the case with the AMD29Fx00 type memory's) fera gathers all

those pages and deletes them all with a single command.

• If you have a flash memory that mirrors in the address space, erase will work with the mir-

rored addresses, too. Delpage will not.

Delpage takes a page number as an argument. This number is counted from 0 to 15 (0f). To

erase the mCAT kernel - for example - you have to issue:

delpage 6 on TSM900, BIT900

delpage 0f on NET900H/H+, BIT900A, BIT900-104

delpage 3 on all systems using the TMP95FY64 CPU

See Appendix C for a table of Flash memories and page numbers.

© 2008 mocom software GmbH & Co KG 389/399

XIV. mCAT Release Documentation mCAT 2.20

purge

By using purge an mCAT module (including the entire mCAT kernel itself) can be marked as

„not startable“. Such a module will be ignored in the mCAT startup process. This command

allows the deactivation of modules that do not work and block the startup process for any

reasons.

purge <addr>

The address expected by purge is the base address of the modules IMD - except for the ker-

nel! To „purge“ the kernel, the base address of the mCAT reserved page must be given. See

Appendix C2 for more information.

3.4. Downloading Motorola S3-Hexfiles

The simplest, fastest and best way to download any S3 file is using mocoms LGO.EXE ter-

minal program for DOS or the forthcoming wLGO.EXE for WIN95/98/NT. You can specify

the S3-file as a command line parameter or interactively by use of hotkey „F3“.

However, other terminal programs work, too. Set them up for 19200-8n1, select „ASCII

DOWNLOAD“, set the „line pacing“ to 30ms (the time to program Flash memory) - and it

should work! The „line pacing“ will add some „delay“ at the end of a line.

Please note that no command must be issued: Just start the download, SYSMON / SLDR

will detect S3 records on the fly!

3.5. Replacing mCAT

If your system is running mCAT and you want to replace mCAT by a more recent version,

follow 4 simple steps to replace mCAT (this is the normal mCAT replacement procedure):

1. Use the „purge“ command on the mCAT base address (see Appendix C2) from the SYS-

MON command line (or from BITMON if you use BITBUS) to invalidate the kernel. For ex-

ample: use purge 8f0000 for NET900H with an AM29F800 Flash.

2. Use „delpage“ to mark the mCAT page for deletion. For the NET900H use delpage 0f.

3. Reset the system. BOOTMON will erase the page 0f and start right away. You can issue

a blank command to check if the page is really clean.

4. Download the new mCAT and issue a reset afterwards. Ready!

390/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

If the system hangs (for any reason), you have two alternatives:

If only the user supplied module hangs:

1. Set the BOOT MODE. See 4.4. for details on your hardware. For NET900H, simply close

JUMPER 20.

2. Reset the system by switching OFF/ON.

3. Now you are under BOOTMON control. Remove the BOOT MODE plug/jumper NOW!

4. Use the purge command to disable all „mad“ modules.

5. With a reset you get back to mCAT - if you have not forgotten to unplug the BOOT MODE

jumper/plug (step 3)!

If the system hangs because the download of the mCAT kernel failed or for any reason

mCAT got damaged, follow this list:

1. Set the BOOT MODE. See 4.4. for details on your hardware. For NET900H, simply close

JUMPER 20.

2. Reset the system by switching OFF/ON.

3. Now you are under BOOTMON control. Remove the BOOT MODE plug/jumper NOW!

4. Use purge to disable all modules including mCAT! Issue a delpage command to erase

mCAT (and other pages if you like).

5. Continue with step „3“ of the normal mCAT replacement procedure

© 2008 mocom software GmbH & Co KG 391/399

XIV. mCAT Release Documentation mCAT 2.20

4. Supported Flash Types

Manufacturer 128kByte 256kByte 512kByte 1024kByte
AMD AM29F010

AM29F100T

AM29F200T AM29F040

AM29F400T

AM29F800T

TI AM29F010 - AM29F040 -

TOSHIBA - TMP95FY64 - -

FUJITSU MBM29F010 MBM29F200T MBM29F040

MBM29F400T

MBM29F800T

ST STM29F100T STM29F200T STM29F040

STM29F400T

-

HYUNDAI - HY29F200T HY29F040

HY29F400T

HY29F800T

Table 32: Supported Flash Memories

392/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

A. Index
BGM 295

BGM_ERR_DIR_CORRUPTED 310

BGM_ERR_EOF 310

BGM_ERR_FILE_CORRUPTED 310

BGM_ERR_FILE_NOT_FOUND 310

BGM_ERR_FILE_NOTUSED 310

BGM_ERR_ILLEGAL_ACCESS 310

BGM_ERR_ILLEGAL_POS 310

BGM_ERR_INVALID_FILE_NAME 310

BGM_ERR_LOCKED 310

BGM_ERR_NOT_INSTALLED 310

BGM_ERR_NOT_OPEN 310

BGM_ERR_OK 310

BGM_ERR_OUT_OF_MEMORY 310

BGM_ERR_RDONLY 310

BGM_ERR_RECORD_CORRUPTED 310

BGM_ERR_RECORD_EMPTY 310

BGMClear 303

BGMClose 308

BGMCreate 307

BGMGetAttrib 306

BGMGetPos 303

BGMInit 308

BGMLockRecord 305

BGMOpen 308

BGMRead 299

BGMReadDir 306

BGMRemove 307

BGMSetAttrib 305

BGMSetPos 303

BGMUnLockRecord 305

BGMVPrint 300

BGMWrite 298

BGMWriteRandom 301

Buffer Pools

MsgPoolAlloc 316

MsgPoolAvailable 317

MsgPoolCalcSize 316

MsgPoolCreate 315

MsgPoolFree 317

Datatypes

bool 85

BOOL 85

byte 85

int 85

INT16 85

INT32 85

INT64 85

INT8 85

INTEGER 85

long 85

lword 85

short 85

UINT16 85

UINT32 85

UINT64 85

UINT8 85

unsigned 85

© 2008 mocom software GmbH & Co KG 393/399

XIV. mCAT Release Documentation mCAT 2.20

UNSIGNED 85

word 85

DateTime 287

MTIME 287

MTime2SysTime 290

MTimeGet 289

MTimeSet 288

MTimeSinceStart 289

Schedule

ScheduleAt 292

ScheduleEvery 293

SYSTIME 287

SysTime2MTime 291

SysTimeGet 291

SysTimeSet 290

DELPAGE 327

EEPROM 321

BIT900 FIFO DRIVER 325

BITBUS PARAMETERS 324

EE_BASIC_START 326

EE_CHARSET 326

EE_COUNTRY 326

EE_ETHERNET_MODE 326

EE_LANGUAGE 325

EE_USER_START 326

EEPROMGetSize 323

EEPROMRead 323

EEPROMWrite 323

FLASH CLEANUP VECTOR 325

IP DNS ADDRESS 326

IP GATEWAY 326

IP INTERFACE ADDR 326

IP SUBNET MASK 326

SYSTEM HEAPSIZE 325

Error Code Cross Reference 153

FLASH

FLASHErase 329

FLASHGetName 330

FLASHGetNameByIndex 331

FLASHGetSize 331

FLASHGetSizeByIndex 332

FLASHGetTypeCode 330

FLASHWrite 329

Supported FLASH Memories 333

HTTPD 241

AddFilterFunction 264

AddFunction 264

ARGV 262

CGI-Arguments 247

CGIAddArgByIndex 268

CGIAddArgByName 268

CGIAppendArg 268

CGIClearArgList 268

CGIGetArgByIndex 268

CGIGetArgByName 268

CGIGetIndexByName 268

CGIPresetArgList 268

config.db 244

Configuration 242

Enlarge Memory Pool 246

394/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

Enlarge RXBuffer 246

Enlarge TXBuffer 246

HTTPDAddFloatConst 263

HTTPDAddNumConst 263

HTTPDAddStringConst 263

HTTPDAllocFormatted 264

HTTPDCreateNamespace 263

HTTPDQuery 263

Internal Representation of Argument Lists 262

Intrinsic namespace 'int' 261

Intrinsic namespace 'xio' 258

keepalive 246

MSP namespace 'system' 262

namespace 263

I2C-Driver 334

I2CReceive 335

I2CReceiveEx 336

I2CSend 337

I2CSendEx 338

Initial Module Descriptor

IMD 29

INIT-Modules 142

Initial Module Descriptor (IMD) 140

SysGetImdPtr 142

TaskInit 29

Interrupts

IntDisable 133

IntEnable 133

Interrupt Driver 124

Interrupt-ID (intid) 378

IntGetLevel 134

IntInstall 132

IntIsPending 135

IntSetLevel 134

IntSetTrap 133

service 126

wakeup 128

WS 125

IO

CFG 162

CFGCH 163

DrvTriggerWD 170

IN 160

INFO 162

INFOCH 163

IOObjCreate 159

Message Passing Interface 166

OUT 161

SYSTEM() 160

VECIN 161

VECOUT 161

WAIT 165

WAIT Interface 164

WAITIO 166

XPEventRenew 169

XPEventSubscribe 168

XPEventTerminate 170

Memory Management 311

GetTopOfMemory 312

MemAlloc 313

© 2008 mocom software GmbH & Co KG 395/399

XIV. mCAT Release Documentation mCAT 2.20

MemFree 314

MemGetFree 314

MemGetRamSize 314

 320

message passing 100

Message Passing

Message Passing 31, 100, 110

MSG 111

MsgAddQueue 123

MsgDelQueue 123

MsgGet 122

MSGID 111

MsgIdCreate 116

MsgIdQuery 116

MsgPost 119

MsgSend 119

MsgSendReply 118

MsgSendRequest 117

MsgUpdate 121

MsgWait 120

module 29

MsgPoolAddNotifyHdl 318

MsgPoolCreateEx 320

MsgPoolGetInfo 319

MTIME

Date and Time Library 287

non-volatile memory 321

Self 85

Serial Driver

ComGetDCD 283

ComOperation 279

ComReadMsg 276

ComResDTR 282

ComRxFlush 282

ComSetCharSet 280

ComSetDTR 282

ComSetEnd1Char 280

ComSetEnd2Char 280

ComSetHdl 281

ComSetHs 278

ComSetLenLimit 280

ComSetMode 278

ComSetSpeed 277

ComSetSyncChar 279

ComSetTimeouts 281

ComTxFlush 282

ComWriteMsg 276

Serial Driver 271

SimpleHandler 279

6. Shared Libraries 136

LIB 137

Library access code 136

SysAddLib 138

SysGetLib 138

SimpleIO 283

DumpHex 285

kbhit 285

RdChar 285

SIODumpHex 284

SIOkbhit 284

396/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

SIORdChar 284f.

SIOWrChar 284

SIOWrDecLong 283

SIOWrDecLWord 284

SIOWrDecShort 283

SIOWrDecWord 284

SIOWrHexByte 284

SIOWrHexLWord 284

SIOWrHexWord 284

SIOWrLn 283

SIOWrStr 284

WrChar 285

WrDecLong 285

WrDecLWord 285

WrDecShort 284

WrDecWord 285

WrHexByte 285

WrHexLWord 285

WrHexWord 285

WrLn 284

WrStr 285

Sockets 215

MS_ERROR_CONNECTION_BROKEN 233

MS_ERROR_CONNECTIONLESS 233

MS_ERROR_DESTINATION_NOT_REACH-
ABLE 233

MS_ERROR_LISTENING 233

MS_ERROR_MEMORY_OVERFLOW 233

MS_ERROR_NO_SOCKET 233

MS_ERROR_NOT_OPEN 233

MS_ERROR_OK 233

MS_ERROR_PORT_INUSE 233

MS_ERROR_REFUSE 233

MS_ERROR_SYS 233

MS_ERROR_UNKNOWN_PROTO 233

MS_ERROR_USER_BUFFER 233

MSAccept 226

MSAckDisconnect 228

MSClose 224

MSConnect 225

MSCreate 224

MSDisconnect 227

MSDrop 231

MSEVENT 233

MSGetErrorStr 232

MSGetHostByName 231

MSIP2String 232

MSRead 229

MSRefuse 227

MSSetKeepAlive 228

MSWrite 230

UDPADDR 220

SYSMON

blank 67

crc 67

delpage 70

Download 72

dump 66

eemove 72

eeread 71

© 2008 mocom software GmbH & Co KG 397/399

XIV. mCAT Release Documentation mCAT 2.20

eewrite 71

erase 69

fill 66

find 66

flashid 69

gettime 80

go 73

heap 64

help 56

in 68

info 65

init 73

is 57

kill 59

libs 61

mem 64

modules 61

move 67

msgids 59

out 68

pools 65

ps 58

purge 70

reset 66

resume 59

rmsys 73

S3.. 72

settime 79

show 62

suspend 59

upload 72

val 71

xcfg 77

xin 75

xinfo 77

xlist 74

xout 75

xvin 76

xvout 76

9. System Functions 145

SysCalcHash 146

SysReset 145

SysScan 145

SYSTIME

Date and Time Library 287

Tasks 85

main thread 30

MQUEUE 86

MQUEUEDESC 87

Task 30

TASK 86f.

TaskActivate 89

TaskCreate 88

TaskDelete 89

TaskGetPtr 92

TaskGetState 91

TaskResume 91

TaskSuspend 90

Threads 92

main thread 93

398/399 © 2008 mocom software GmbH & Co KG

mCAT 2.20 XIV. mCAT Release Documentation

Thread 30

THREAD 93

ThreadCreateKrnl 108

ThreadDelay 104

ThreadGetPrio 98

ThreadGetState 99

ThreadKill 97

ThreadProtect 106

ThreadResume 97

ThreadSetHandler 109

ThreadSetPrio 98

ThreadSignal 104

ThreadSleep 100

ThreadSleepQueued 102

ThreadSlice 100

ThreadSuspend 97

ThreadUnProtect 107

TICKER 146

ExpressTimer 146, 149, 151

TAFTER 146ff.

TALL 146ff.

XTAdd 151f.

XTAddTimer 152

XTGetResolution 153

XTRemove 152

XTSet 153

7. Trace & Debug 138

TraceWriteLog 139

USRLED 370ff.

 155

© 2008 mocom software GmbH & Co KG 399/399

	I. Installing mCAT
	1. A Note to Experienced mCAT Users
	2. What You Need
	3. Install the Software
	4. Where Can I Find mCAT
	5. Get Connected
	6. Try an Example
	7. DONE! The Things to do Next ...

	II. mCAT 2 Users Manual
	1. Introduction
	1.1. A few Tips
	1.2. What You Need to Know Beyond mCAT

	2. The Elements of mCAT
	2.1. Modules
	2.2. Threads
	2.3. Tasks
	2.4. The mCAT Message Passing
	2.4.1. Bob
	2.4.2. Alice
	2.4.3. mCAT Implementation of Clients and Servers
	2.4.3.1. MCAT Message ID
	2.4.3.2. MCAT Messages
	2.4.3.3. Using Priorities
	2.4.3.4. Memory Management and Message Passing
	2.4.3.5. Message Queues and using Multiple Queues

	2.5. Interrupt Drivers
	2.6. Shared Libraries
	2.7. The Ticker Service
	2.8. ExpressIOTM
	2.9. Memory Management
	2.10. C Programming Style and supplied MACROS
	2.10.1. PRIVATE, PUBLIC and EXTERN
	2.10.2. Loop
	2.10.3. ARRAYSIZE
	2.10.4. ALIGN

	3. Putting it all Together
	3.1. A Simple Example: TICKTEST
	3.1.1. Includes Needed
	3.1.2. TaskInit
	3.1.3. TaskMain()
	3.1.4. The Source Code
	3.1.5. Creating the Makefile
	3.1.5.1. Selecting a Target Memory Description
	3.1.5.2. Generating the Initial Module Header (IMD)

	3.1.6. Compile and Download
	3.1.7. Execute and Debug

	3.2. A Example using ExpressIO
	3.2.1. The Gifts of ExpressIO
	3.2.2. The Source Code
	3.2.3. Compile and Run

	4. What to Read Next?

	III. SYSMON – A System Monitor
	1. Introduction
	2. Line Setup and Terminal Features
	3. Basic Syntax
	3.1. SYSMON is Case Sensitive!
	3.2. Prompt
	3.3. Numbers
	3.4. Strings

	4. Command Reference
	4.1. SYSMON Help
	4.2. mCAT Base Commands
	4.3. Memory and I/O Manipulation Commands
	4.4. Flash Memory Manipulation Functions
	4.5. EEPROM Manipulation Functions
	4.6. Program Upload / Download and Start
	4.7. Optional Commands
	4.7.1. ExpressIO Specific Commands
	4.7.1.1. Constant Values Used for xinfo & xcfg Commands

	4.7.2. Realtime Clock Specific Commands
	4.7.3. BGMEM Specific Commands
	4.7.3.1. format {size}
	4.7.3.2. dir
	4.7.3.3. attrib <filename> <+r|-r>
	4.7.3.4. del <filename>
	4.7.3.5. create <filename><#records><#size><fifo|lifo|ring|random>

	4.7.4. SOCKET / Ethernet Specific Commands
	4.7.4.1. IP-Information at a Glance: info and ips
	4.7.4.2. Setup IP-Addresses: setip
	4.7.4.3. List IP-Status: ips
	4.7.4.4. Set/Display Ethernet Mode
	4.7.4.5. Set the TELNETD Password

	IV. mCAT Kernel Reference
	1. The mCAT Kernel Technical Reference
	1.1. Typographic Conventions
	1.2. A note on Datatypes

	2. mCAT Tasks
	2.1. The Concept of Tasks
	2.2. Relation with other mCAT Concepts
	2.3. Task Related Data Structures
	2.3.1. The Data Structures before MCAT 2.20-R00168
	2.3.2. The Data Structures for non TLCS platforms, MCAT 2.10-R00168 and later

	2.4. Function Reference

	3. mCAT Threads
	3.1. The Concept of Threads
	3.2. Relation with other mCAT Concepts
	3.3. Thread Related Data Structures
	3.3.1. MCAT 2.10 and later - TLCS900 Platform
	3.3.2. mCAT 2.20 – non TLCS platform

	3.4. Function Reference

	4. mCAT Message Passing
	4.1. The Concept of Message Passing
	4.2. Relation with other mCAT Concepts
	4.3. The MSGID & MSG Data Structures
	4.4. Messages: How to?
	4.5. Flow Charts
	4.6. Function Reference

	5. mCAT Interrupts and QuickISR Interrupts
	5.1. The Concept of Interrupt Drivers
	5.1.1. The WorkSpace Data Structure
	5.1.2. WS Data Structure on the TLCS platform
	5.1.3. WS Data Structure on non TLCS platforms
	5.1.4. The “service” Function
	5.1.5. The “wakeup” Function
	5.1.6. The “go” Function
	5.1.7. The “notify” Function
	5.1.8. Important Note

	5.2. TLCS900 Interrupt Level
	5.3. QuickISR
	5.3.1. QuickISR on Toshiba TLCS900 Platforms (mCAT 2.10)
	5.3.2. QuickISR on ARM7 platforms (mCAT 2.10-R00168)

	5.4. Relation with other mCAT concepts
	5.5. Function reference

	6. mCAT Shared Libraries
	6.1. The Concept of Shared Libraries
	6.1.1. What is a Shared Library
	6.1.2. A Shared Library Call
	6.1.3. Why Should I use “LOCAL” Structure?

	6.2. Relation with other mCAT Concepts
	6.3. The Library Descriptor
	6.4. MIC & LDF-Files
	6.5. Function Reference

	7. mCAT Trace & Debug Interface
	7.1. Function Reference

	8. mCAT Modules and the IMD (Initial Module Descriptor)
	8.1. The Module / IMD Concept
	8.2. IMD Reference
	8.2.1. mCAT 2.10-R00168

	8.3. INIT-Modules
	8.3.1. What are INIT-Modules?
	8.3.2. How to Write an INIT

	9. mCAT Miscellaneous System Functions
	10. The mCAT Ticker Sevice
	10.1. What is the Ticker Good for?
	10.2. TALL
	10.3. TAFTER
	10.4. The TickerMsg Structure
	10.5. What is an ExpressTimer (XT)?
	10.5.1. The ExpressTimer Handler Function
	10.5.2. The ExpressTimer Data Structure
	10.5.3. The XT-API functions

	11. Error Code Cross Reference

	V. mCAT ExpressIOTM
	1. Introducing ExpressIOTM
	1.1. Overview
	1.2. A Note on Datatypes

	2. IOOBJECTs
	2.1. Mapping Physical Ports to IOOBJECTS
	2.1.1. ExpressIOTM Physical Drivers
	2.1.2. Bus, Module, Channel: Referring to the Hardware
	2.1.3. Classes
	2.1.4. The IOObjCreate Function
	2.1.5. The SYSTEM Function

	2.2. Vector Access versus Single Channel Access
	2.3. The IOOBJECT Methods in Detail
	2.4. Configuration and Information Retrieval
	2.5. “Express Programs”
	2.5.1. The WAIT Interface
	2.5.2. Message Passing Interface
	2.5.2.1. Message Passing Interface – Function Reference

	2.6. WatchDog Handling

	3. Putting it together: A Quick Start Tutorial
	4. ExpressIOTM Reference
	4.1. Using CFG and INFO Method Calls to Configure Devices
	4.1.1. Basic Info and Configuration Calls
	4.1.1.1. Hardware Module Identification
	4.1.1.2. Retrieving Interface Information
	4.1.1.3. Retrieving Hardware State Information
	4.1.1.4. Enable Operation

	4.1.2. Analog I/O
	4.1.2.1. Preferred Physical Units
	4.1.2.2. CFG & INFO Calls Special to Analog Modules
	4.1.2.3. Setting Individual Scaling Factors
	4.1.2.4. Attaching an Individual Interpolation Table

	4.1.3. CFG & INFO Calls for Position Encoder Drivers
	4.1.4. XP BASIC Info and Configuration CALLS
	4.1.4.1. Retrieving the Name of an ExpressProgram
	4.1.4.2. Setting and Retrieving the Sample Rate

	4.2. ExpressPrograms for DIGITAL I/O
	4.2.1. Single Channel XP's
	4.2.1.1. EDGE DETECTOR
	4.2.1.2. EVENT COUNTER
	4.2.1.3. PULSE

	4.2.2. Vector XP's
	4.2.2.1. VECCOUNTER
	4.2.2.2. CAPTURE

	4.3. Supported Hardware Reference
	4.3.1. ELZET80 TSM
	4.3.1.1. TSM-ARMCPU
	4.3.1.1.1. The Hardware Frequency and Event counters

	4.3.1.2. TSM-CPUH2
	4.3.1.2.1. The Hardware Frequency and Event counters

	4.3.1.3. TSM-CPU900
	4.3.1.4. Digital I/O boards
	4.3.1.5. Analog I/O modules
	4.3.1.5.1. TSM8AD8
	4.3.1.5.2. TSM8AD12
	4.3.1.5.3. TSM2DA12
	4.3.1.5.4. TSM4DA16

	4.3.1.6. Position Encoders
	4.3.1.6.1. TSM4INC

	4.3.2. NET-A7
	4.3.2.1. NET-A7-4I4R

	4.3.3. EVA900
	4.3.4. DINX
	4.3.5. I2C-BUS
	4.3.5.1. Limitations
	4.3.5.2. I2C-8E8A24
	4.3.5.3. I2C-16E24

	4.3.6. BITBAHN

	5. Library Function Reference
	6. LINTAB.EXE

	VI. mCAT Socket Interface
	1. Introduction
	1.1. Features
	1.2. Difference to UNIX Sockets

	2. Socket-Interface
	2.1. The Structure of the mCAT TCP/UDP/IP Protocol Stack
	2.2. Basic Setup
	2.2.1. Before the First Steps
	2.2.2. Ethernet Setup
	2.2.3. Create a MSGID
	2.2.4. Create a Socket
	2.2.5. Resolve Domain Names
	2.2.6. The Message Loop

	2.3. Data Exchange
	2.3.1. Connection Less Protocols (UDP)
	2.3.1.1. No Connection!
	2.3.1.2. Be Careful!
	2.3.1.3. Data Exchange
	2.3.1.4. Socket or Event: A Note on the Referred Objects

	2.3.2. Connection Orientated Protocols (TCP)
	2.3.2.1. Establish a Connection
	2.3.2.1.1. mCAT Application as a TCP Server
	2.3.2.1.2. mCAT Application as a TCP Client

	2.3.2.2. Data Exchange
	2.3.2.3. Terminating a Connection
	2.3.2.4. Keep-Alive

	2.4. Utility Functions

	3. The Function Reference
	3.1. Create and Close Sockets
	3.2. Handling Connections
	3.3. Data Exchange
	3.4. Miscellaneous
	3.5. The Socket Events
	3.5.1. MS_EVENT_DATA_AVAILABLE
	3.5.2. MS_EVENT_CONNECT
	3.5.3. MS_EVENT_DISCONNECT

	3.6. Socket Error Codes

	4. Examples
	4.1. GetTime using UDP
	4.2. GetTime using TCP
	4.3. A Simple mCAT-TCP-Server

	5. Limitations

	VII. mCAT HTTPD Server
	1. Introduction
	1.1. CGI-Handling
	1.1.1. What is CGI-Handling?
	1.1.2. Traditional CGI-Handling
	1.1.3. HTML-Template processing using MSP

	2. The mCAT-HTTPD-Server setup
	2.1. TCP/IP configuration
	2.2. The HT-FileSystem (HTFS)
	2.3. Basic Authentication
	2.4. The 'config.db' file
	2.4.1. Config Parameters
	2.4.1.1. Port
	2.4.1.2. Connections
	2.4.1.3. Root
	2.4.1.4. Keepalive
	2.4.1.5. Txbuffersize
	2.4.1.6. Rxbuffersize
	2.4.1.7. Mempool	
	2.4.1.8. User-Names and Passwords

	3. The mCAT Server Page (MSP) Language
	3.1. CGI Argument passing
	3.2. An MSP Statement
	3.2.1. Charsets
	3.2.2. Escape Characters
	3.2.2.1. General statement escape character
	3.2.2.2. Macro escape character
	3.2.2.3. Keyword escape character
	3.2.2.4. Constant value macros escape character

	3.2.3. Symbols
	3.2.4. Namespaces
	3.2.5. Constant strings
	3.2.6. Argument Lists
	3.2.6.1. Basic Concept
	3.2.6.2. Accessing Global Arguments
	3.2.6.3. Accessing Local Variables

	3.2.7. Keywords
	3.2.7.1. Local / Argv
	3.2.7.2. Load / Store
	3.2.7.3. paste / tolower / toupper
	3.2.7.4. foreach / for / endfor
	3.2.7.5. if / elseif / else / endif / not
	3.2.7.6. while / endwhile
	3.2.7.7. repeat / until

	3.2.8. Functions and Filters

	3.3. A few Considerations on HTML
	3.4. Intrinsic Extensions
	3.4.1. Intrinsic Namespace 'xio'
	3.4.2. Intrinsic Namespace 'int'
	3.4.3. Intrinsic Namespace 'system'

	3.5. Custom Extensions
	3.5.1. Internal Representation of Argument Lists
	3.5.2. The Server Handle
	3.5.3. Registering a Namespace
	3.5.4. Adding Macros
	3.5.4.1. Adding Constant Macros
	3.5.4.2. Adding Function and Filter Macros

	3.5.5. Writing Function and/or Filter Macros
	3.5.6. A Customer supplied MSP-Function Example – The complete Source
	3.5.7. The Argument List Handling API

	4. The mCAT-HTTPD-Server traditional CGI-Processing

	VIII. MCAT Serial Driver
	1. Introduction
	2. Basic Operation
	2.1. Configuration
	2.1.1. EEPROM Configuration
	2.1.2. API based Configuration
	2.1.3. Configuring »SimpleHandler«

	2.2. Operation
	2.2.1. Message Formats
	2.2.2. Requests/Replys
	2.2.3. User Supplied Rx Handler
	2.2.4. Buffer Usage

	3. Function Reference
	3.1. Basic Functions
	3.2. SimpleHandler
	3.3. Auxilary Functions
	3.4. Modem Line Handling

	4. The SimpleIO Functions
	4.1. SimpleIO Function directed to the default UART (SYSMON)
	4.2. Disabling SYSMON (mCAT2.20)

	IX. mCAT Date and Time Library
	1. Introduction
	1.1. Data Types
	1.1.1. The MTIME Data Type
	1.1.2. The SYSTIME Structure
	1.1.3. The TIMEZONE Structure
	1.1.4. Daylight Saving Time Switching Times
	1.1.5. Predefined Daylight Saving Times
	1.1.6. MSGID
	1.1.7. Errors

	2. Mtime
	2.1. Function Reference

	3. SysTime
	4. Function Reference
	5. Timezone
	5.1. Function Reference

	6. LocalTime
	6.1. Function Reference

	7. Schedule
	7.1. Function Reference

	X. BgMem: Nonvolatile Data Storage for mCAT
	1. Introduction
	2. Fundamentals
	2.1. Organization
	2.2. File Names
	2.3. Treatment of BgMem at System Start
	2.4. Memory Management
	2.5. File types
	2.5.1. File Pointers
	2.5.2. FIFO Files
	2.5.3. LIFO Files
	2.5.4. Ring Buffers
	2.5.5. Random Access Files

	3. Setup of a BgMem file
	3.1. Special Operating Considerations
	3.1.1. Changing Heap and BgMem Sizes
	3.1.2. Creating and Deleting Files
	3.1.3. Data Loss From Programming Errors

	4. Function Reference
	5. Error Codes

	XI. mCAT Random Access Memory Management
	1. Introducing mCAT V2 Memory Management
	1.1. System Memory Heap Management
	1.2. Message Buffer Pool Management
	1.3. Memory Address and Pointer Calculation

	2. Datatypes
	3. The Memory Management API
	4. The Buffer Pool Manager API

	XII. mCAT Non-Volatile Memory Management
	1. Introducing Non-Volatile Memory Management
	1.1. Serial EEPROM API
	1.2. FLASH Memory API
	1.3. I2C API

	2. Accessing EEPROMS
	2.1. EEPROM Address Scheme
	2.2. The EEPROM API
	2.3. The mCAT V2 EEPROM usage

	3. Accessing Flash Memory
	3.1. DELPAGE
	3.2. FLASH Memory API
	3.3. Supported Flash Memories [08/01/2008]

	4. I2C-Driver
	4.1. I2C Addressing
	4.1.0.1. Extended addressing

	4.2. I2C-Function Reference

	XIII. mCAT Tools Documentation
	1. The Basic Structure of mDE
	1.1. The Folder Structure
	1.2. MCATINF.INI
	1.2.1. Registry Entry before mCAT2.20
	1.2.2. Registry Entry with mCAT2.20
	1.2.3. Section [MCAT] in mCATINF.INI
	1.2.4. Path macro replacement

	1.3. MCATPATH

	2. The Tools
	2.1. CIMD
	2.2. IMD
	2.3. VMAKE
	2.3.1. Using Macros
	2.3.2. Command Line Format
	2.3.3. DEFAULT Makefile: v4.ini / v103.ini
	2.3.4. The Basic Structure of an mCAT Makefile
	2.3.5. Extended Commands
	2.3.6. MKLNK
	2.3.7. S3PATCH
	2.3.8. TAG

	2.4. Terminal program
	2.4.1. Features

	2.5. Hex File Tools
	2.5.1. HEX2IMG
	2.5.2. IMG2HEX
	2.5.3. HEXMERGE

	2.6. Little Helpers
	2.6.1. SETVAR
	2.6.2. MCATPATH

	2.7. MIC
	2.7.1. The MIC Source File
	2.7.2. The MIC Command Line Arguments

	3. Creating own Projects
	3.1. Creating a Makefile and Executing the Program
	3.2. Creating a TARGET File

	XIV. mCAT Release Documentation
	1. MCAT 2.20
	1.1. Porting Existing Applications
	1.1.1. Changes Needed
	1.1.1.1. The Makefile(s)
	1.1.1.2. The C-Source
	1.1.1.2.1. MsgUpdate, MsgWait, ThreadSleep, ThreadSleepEx, ThreadDelay
	1.1.1.2.2. Includefiles

	1.1.2. ARM7 Watchpoints
	1.1.2.1. Miss Aligned Access
	1.1.2.2. Structure Member Alignment

	1.1.3. What if I Want to Maintain my Application with both the 2.10 and the 2.20?
	1.1.4. If it doesn't Work!

	2. Hardware Related Information
	2.1. General Information
	2.1.1. USRLED and BITBUS activity LED
	2.1.2. Boot Control

	2.2. Hardware Reference
	2.2.1. NET-A7
	2.2.1.1. CPU + mCAT CORE/HARD Macro
	2.2.1.2. Memory
	2.2.1.3. USRLED
	2.2.1.4. BOOT Control

	2.2.2. TSMARMCPU
	2.2.2.1. CPU + mCAT CORE/HARD Macro
	2.2.2.2. Memory
	2.2.2.3. USRLED
	2.2.2.4. BOOT Control

	2.2.3. TSMCPUH2
	2.2.3.1. CPU + mCAT CORE/HARD Macro
	2.2.3.2. Memory
	2.2.3.3. USRLED
	2.2.3.4. BOOT Control

	2.2.4. DINX
	2.2.4.1. CPU + mCAT CORE/HARD Macro
	2.2.4.2. Memory
	2.2.4.3. USRLED
	2.2.4.4. BOOT Control

	2.2.5. NET900H/H+
	2.2.5.1. CPU + mCAT CORE/HARD macro
	2.2.5.2. Memory
	2.2.5.3. USRLED
	2.2.5.4. BOOT Control

	2.2.6. ECBCPU900
	2.2.6.1. CPU + mCAT CORE/HARD Macro
	2.2.6.2. Memory
	2.2.6.3. USRLED
	2.2.6.4. BOOT Control

	2.2.7. BIT900
	2.2.7.1. CPU + mCAT CORE/HARD Macro
	2.2.7.2. Memory
	2.2.7.3. USRLED
	2.2.7.4. BOOT Control

	2.2.8. TSM900
	2.2.8.1. CPU + mCAT CORE/HARD Macro
	2.2.8.2. Memory
	2.2.8.3. USRLED
	2.2.8.4. BOOT Control

	2.3. The Valid Interrupt-ID (intid) Values

	3. BOOTMON SLDR Commands
	3.1. The Serial Line LoaDeR
	3.2. Argument Format
	3.3. SLDR Commands
	3.4. Downloading Motorola S3-Hexfiles
	3.5. Replacing mCAT

	4. Supported Flash Types
	A. Index

